Question Number 224335 by kin last updated on 04/Sep/25 Answered by mingski last updated on 04/Sep/25 $$=\frac{\mathrm{2}×\mathrm{3}×\mathrm{9}}{\mathrm{3}}−\mathrm{6}×\mathrm{3}−\left(\frac{\mathrm{2}×\mathrm{2}×\mathrm{4}}{\mathrm{3}}−\mathrm{6}×\mathrm{2}\right) \\ $$$$=\mathrm{18}−\mathrm{18}−\left(\frac{\mathrm{16}}{\mathrm{3}}−\mathrm{18}\right) \\ $$$$=\frac{\mathrm{38}}{\mathrm{3}} \\ $$ Terms of…
Question Number 224036 by Buck2233Henry last updated on 15/Aug/25 $$\:\frac{{dy}}{{dx}}=\frac{{y}^{\mathrm{6}} −\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{2}{xy}^{\mathrm{5}} +{x}^{\mathrm{2}} {y}^{\mathrm{2}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 224025 by Simurdiera last updated on 14/Aug/25 $${Resuelve}\:{la}\:{ecuaci}\acute {{o}n}\:{diferencial} \\ $$$$\left[\mathrm{4}{x}^{\mathrm{3}} {y}\:−\:\frac{{e}^{{xy}} }{{x}}\:+\:{y}\:\mathrm{ln}\left({x}\right)\:+\:{x}\:\sqrt[{\mathrm{3}}]{{x}\:−\:\mathrm{4}}\right]{dx}\:+\:\left[{x}^{\mathrm{4}} −\:\frac{{e}^{{xy}} }{{y}}\:+\:{x}\:\mathrm{ln}\left({x}\right)\:−\:{x}\right]{dy} \\ $$$${Help}\:…. \\ $$ Terms of Service Privacy…
Question Number 223988 by MirHasibulHossain last updated on 12/Aug/25 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{DE}\:\mathrm{using}\:\mathrm{the}\:\mathrm{method}\:\mathrm{of}\:\mathrm{Frobenius}\::\: \\ $$$$\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}''−\mathrm{2xy}'+\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\mathrm{y}=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 223054 by Silver last updated on 13/Jul/25 $$\mathrm{find}\:{y} \\ $$$${y}^{{dy}} =\:{x}^{{dx}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 222296 by Shrodinger last updated on 22/Jun/25 $$\left(\mathrm{1}+{x}^{\mathrm{4}} \right){y}'−{x}^{\mathrm{3}} {y}\:=\:{x}^{\mathrm{5}} −{x}^{\mathrm{3}} +\mathrm{2}{x}+\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 221973 by ajfour last updated on 14/Jun/25 $$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+{y}={k}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{6}}{{x}^{\mathrm{4}} }\:\:\:\:\:\: \\ $$$${Find}\:{y}\left({x}\right)\:\:\:\:\left({k}\:{is}\:{constant}\right). \\ $$ Answered by mahdipoor last updated on 14/Jun/25…
Question Number 218396 by Nicholas666 last updated on 09/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 217797 by Tawa11 last updated on 21/Mar/25 $$\mathrm{Solve}: \\ $$$$\:\:\:\:\:\mathrm{5x}^{\mathrm{2}} \:\mathrm{y}''\:\:+\:\:\:\mathrm{x}\left(\mathrm{1}\:\:+\:\:\mathrm{x}\right)\:\mathrm{y}'\:\:−\:\:\mathrm{y}\:\:\:=\:\:\:\mathrm{0} \\ $$ Answered by AntonCWX8 last updated on 22/Mar/25 $${I}.{F},\:\mu\left({x}\right)=\frac{\mathrm{1}}{\mathrm{5}{x}^{\mathrm{2}} }{e}^{\int\frac{{x}\left(\mathrm{1}+{x}\right)}{\mathrm{5}{x}^{\mathrm{2}} }{dx}}…
Question Number 217245 by OmoloyeMichael last updated on 07/Mar/25 $${find}\:{the}\:{following}\:{differential}\:{equation}\: \\ $$$${by}\:{eliminating}\:{the}\:{arbritrary}\:{constant} \\ $$$$\left(\mathrm{1}\right){y}={Ae}^{{x}} +{Bcosx} \\ $$$$\left(\mathrm{2}\right)\:{xy}={Ae}^{{x}} +{Be}^{−{x}} +{x}^{\mathrm{2}} \\ $$$$ \\ $$ Answered by…