Question Number 126285 by bramlexs22 last updated on 19/Dec/20 $$\:\:\Rightarrow{solve}\:{x}^{\mathrm{2}} {y}\:=\:\int_{\mathrm{1}} ^{\:{x}^{\mathrm{2}} } {f}\left(\sqrt{{t}}\right){dx}+{x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}}+\mathrm{1} \\ $$$${y}={f}\left({x}\right)=? \\ $$ Answered by liberty last updated on…
Question Number 60694 by maxmathsup by imad last updated on 24/May/19 $${solve}\:\:\left({x}^{\mathrm{3}} −{x}\right){y}^{''} \:\:\:−\mathrm{2}{x}\:{y}^{'} \:+\mathrm{3}{y}\:={xln}\left(\mathrm{1}+{x}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 126229 by MathSh last updated on 18/Dec/20 $$\left(\mathrm{1}+{y}\right){x}'={x} \\ $$ Answered by Dwaipayan Shikari last updated on 18/Dec/20 $$\left(\mathrm{1}+{y}\right)\frac{{dx}}{{dy}}={x}\:\Rightarrow\int\frac{{dy}}{\mathrm{1}+{y}}=\int\frac{{dx}}{{x}}\:\Rightarrow\mathrm{1}+{y}={Cx} \\ $$ Answered by…
Question Number 60693 by maxmathsup by imad last updated on 24/May/19 $${solve}\:\:\left(\mathrm{2}+{e}^{−{x}} \right){y}^{'} \:\:+\left(\mathrm{2}{x}+{e}^{{x}} \right){y}\:={e}^{{x}} {sinx}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 126223 by liberty last updated on 18/Dec/20 $$\:\:\frac{{dy}}{{dx}}\:+\:\frac{{x}^{\mathrm{2}} {y}}{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} }\:=\:\mathrm{0} \\ $$ Commented by bramlexs22 last updated on 18/Dec/20 $$\:{v}+{x}\frac{{dv}}{{dx}}\:=\:\frac{{x}^{\mathrm{3}} {v}}{{x}^{\mathrm{3}} \left(\mathrm{1}+{v}^{\mathrm{3}}…
Question Number 191713 by Mingma last updated on 29/Apr/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 126122 by benjo_mathlover last updated on 17/Dec/20 $$\:\:{y}.{y}'+\mathrm{3}{y}=\mathrm{2}{x}\: \\ $$ Answered by Dwaipayan Shikari last updated on 17/Dec/20 $${y}'+\mathrm{3}=\frac{\mathrm{2}{x}}{{y}}\:\:\:\:\:\:\:\:{y}={vx}\Rightarrow{y}'={v}+{xv}' \\ $$$$\Rightarrow{xv}'+{v}+\mathrm{3}=\frac{\mathrm{2}}{{v}}\Rightarrow{xv}'=\frac{\mathrm{2}−{v}^{\mathrm{2}} −\mathrm{3}{v}}{{v}} \\…
Question Number 126076 by liberty last updated on 17/Dec/20 $$\:\:\:{y}\left(\mathrm{ln}\:\left(\frac{{y}}{{x}}\right)+\mathrm{1}\right){dx}−{xdy}\:=\:\mathrm{0} \\ $$ Answered by benjo_mathlover last updated on 17/Dec/20 Terms of Service Privacy Policy Contact:…
Question Number 125991 by bramlexs22 last updated on 16/Dec/20 $${If}\:{a}\:{and}\:{b}\:{arbitary}\:{constants},\: \\ $$$${find}\:{a}\:{second}\:−\:{order}\:{equation} \\ $$$${which}\:{has}\:{y}\:=\:{ae}^{{x}} +{b}\:\mathrm{cos}\:{x}\:{as}\:{a} \\ $$$${general}\:{solution}. \\ $$ Answered by liberty last updated on…
Question Number 125958 by bramlexs22 last updated on 15/Dec/20 $$\:\:\:\:{y}\:{dx}\:+{x}\left(\mathrm{ln}\:{x}\:−\mathrm{ln}\:{y}−\mathrm{1}\right){dy}=\mathrm{0} \\ $$$$\:\:\:\:{where}\:{y}\left(\mathrm{1}\right)=\mathrm{0} \\ $$ Answered by Olaf last updated on 16/Dec/20 $${ydx}+{x}\left(\mathrm{ln}{x}−\mathrm{ln}{y}−\mathrm{1}\right){dy}\:=\:\mathrm{0} \\ $$$$\mathrm{Let}\:{y}\:=\:{xu} \\…