Question Number 190851 by Rupesh123 last updated on 13/Apr/23 Answered by mr W last updated on 13/Apr/23 $$\mathrm{cos}\:{y}'=\mathrm{sin}\:{y} \\ $$$$\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−{y}'\right)=\mathrm{sin}\:{y} \\ $$$$\frac{\pi}{\mathrm{2}}−{y}'={n}\pi+\left(−\mathrm{1}\right)^{{n}} {y} \\ $$$$−{y}'=\left(−\mathrm{1}\right)^{{n}}…
Question Number 59720 by Tawa1 last updated on 13/May/19 $$\mathrm{Find}\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:\mathrm{from}\:\mathrm{first}\:\mathrm{principle},\:\:\mathrm{if}\:\:\:\:\mathrm{y}\:=\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right) \\ $$ Commented by maxmathsup by imad last updated on 14/May/19 $$\frac{{dy}}{{dx}}\:=\mathrm{2}{sinx}\:{cosx}\:\:={sin}\left(\mathrm{2}{x}\right). \\ $$…
Question Number 59608 by Andrew Foxman last updated on 12/May/19 $${For}\:{your}\:{development}\:{solve}\:{this} \\ $$$$\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }=\frac{{A}}{{r}^{\mathrm{2}} \left({t}\right)}\:\:{where}\:{r}\left({t}\right)=\alpha{t}^{\beta} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 124923 by bemath last updated on 07/Dec/20 $$\:\frac{{dy}}{{dx}}\:−{y}\:=\:\mathrm{3cot}\:{x}\:.{e}^{\mathrm{sin}\:{x}} \: \\ $$$$ \\ $$ Commented by mohammad17 last updated on 07/Dec/20 $${P}\left({x}\right)=−\mathrm{1}\:\:\:\:\:,\:\:\:\:{Q}\left({x}\right)=\mathrm{3}{cotx}.{e}^{{sinx}} \\ $$$$…
Question Number 59361 by Andrew Foxman last updated on 08/May/19 $${Pls}\:{help} \\ $$$${r}^{\mathrm{2}} {r}''={C}\:{where}\:{r}\left({t}\right)\:{is}\:{a}\:{function}\:{and} \\ $$$${C}\:{is}\:{a}\:{constant} \\ $$ Commented by kaivan.ahmadi last updated on 09/May/19…
Question Number 124763 by Mammadli last updated on 05/Dec/20 $$\boldsymbol{{Solve}}\:\boldsymbol{{in}}\:\boldsymbol{{the}}\:\boldsymbol{{order}}\:\boldsymbol{{of}}\:\boldsymbol{{finding}}\:\boldsymbol{{the}}\:\boldsymbol{{integrsting}}\:\boldsymbol{{stroke}}: \\ $$$$\mathrm{1}.\:\boldsymbol{{ydx}}−\left(\boldsymbol{{x}}^{\mathrm{3}} \boldsymbol{{y}}+\boldsymbol{{x}}\right)−\boldsymbol{{xdy}}=\mathrm{0} \\ $$$$\mathrm{2}.\:\left(\boldsymbol{{xy}}^{\mathrm{2}} +\boldsymbol{{y}}\right)\boldsymbol{{dx}}−\boldsymbol{{xdy}}=\mathrm{0} \\ $$ Commented by Mammadli last updated on 05/Dec/20…
Question Number 190257 by jlewis last updated on 30/Mar/23 $$ \\ $$ Commented by jlewis last updated on 30/Mar/23 Commented by mahdipoor last updated on…
Question Number 190259 by jlewis last updated on 30/Mar/23 $$\mathrm{solve}\:\mathrm{the}\:\mathrm{differential}\: \\ $$$$\mathrm{equation}. \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{dt}^{\mathrm{2}} }\:\mathrm{x}\:+\:\omega^{\mathrm{2}} \mathrm{x}\left(\mathrm{t}\right)\:=\mathrm{0} \\ $$$$;\mathrm{x}\left(\mathrm{0}\right)=\mathrm{0};\mathrm{x}^{\mathrm{2}} \left(\mathrm{0}\right)=\upsilon_{\mathrm{o}} \\ $$ Commented by mr…
Question Number 124701 by Ali85 last updated on 05/Dec/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 124643 by Lordose last updated on 05/Dec/20 $$\:\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{ODE} \\ $$$$\:\:\:\:\mathrm{x}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\frac{\mathrm{dy}}{\mathrm{dx}}\mathrm{ln}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)\:−\:\frac{\mathrm{dy}}{\mathrm{dx}}\mathrm{ln}\left(\mathrm{x}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com