Menu Close

Category: Differential Equation

Find-the-singular-point-in-the-differential-equation-x-3-x-2-9x-9-d-2-y-dx-2-2x-dy-dx-x-3-y-0-

Question Number 120811 by fajri last updated on 03/Nov/20 $${Find}\:{the}\:{singular}\:{point}\:{in}\:{the} \\ $$$${differential}\:{equation}\:: \\ $$$$ \\ $$$$\left({x}^{\mathrm{3}} \:−\:{x}^{\mathrm{2}} \:−\:\mathrm{9}{x}\:+\:\mathrm{9}\right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\mathrm{2}{x}\frac{{dy}}{{dx}}\:+\:\left({x}\:−\:\mathrm{3}\right){y}\:=\:\mathrm{0} \\ $$ Answered by 675480065…

Solution-from-Differential-Equation-System-x-2-2x-1-3x-2-x-2-0-1-x-1-2x-1-2x-2-x-1-0-1-

Question Number 120595 by fajri last updated on 01/Nov/20 $$ \\ $$$${Solution}\:{from}\:{Differential}\:{Equation}\:{System}\:: \\ $$$$ \\ $$$$\left\{_{{x}_{\mathrm{2}} ^{'} \:=\:\:\mathrm{2}{x}_{\mathrm{1}} \:−\:\mathrm{3}{x}_{\mathrm{2}} \:\:,\:{x}_{\mathrm{2}} \:\left(\mathrm{0}\right)\:=\:−\mathrm{1}} ^{{x}_{\mathrm{1}} ^{'} \:=\:\mathrm{2}{x}_{\mathrm{1}} −\:\mathrm{2}{x}_{\mathrm{2}}…

dx-dy-y-xy-2-

Question Number 119933 by bramlexs22 last updated on 28/Oct/20 $$\:\frac{{dx}}{{dy}}\:−{y}\:=\:{xy}^{\mathrm{2}} \\ $$ Answered by bobhans last updated on 28/Oct/20 $$\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{1}}{{y}+{xy}^{\mathrm{2}} }\:=\:\frac{\frac{\mathrm{1}}{{y}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{y}}+{x}} \\ $$$${let}\:\frac{\mathrm{1}}{{y}}=\:{u}\:\Rightarrow\frac{{du}}{{dx}}\:=\:−\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\:\frac{{dy}}{{dx}}…

1-x-d-2-y-dx-2-x-dy-dx-xy-1-1-x-x-1-has-power-series-solution-for-x-lt-1-

Question Number 119567 by abdul88 last updated on 25/Oct/20 $$ \\ $$$$\left(\mathrm{1}\:−{x}\right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}\:} }\:+\:{x}\frac{{dy}}{{dx}}\:−\:{xy}\:=\:\frac{\mathrm{1}}{\mathrm{1}\:−\:{x}}\:,\:{x}\neq\mathrm{1} \\ $$$${has}\:{power}\:{series}\:{solution}\:{for}\:\mid{x}\mid<\mathrm{1}\: \\ $$ Answered by mathmax by abdo last updated…

Differential-Equation-1-x-d-2-y-dx-2-x-dy-dx-xy-1-1-x-x-1-has-the-power-series-solution-for-x-lt-1-

Question Number 119510 by syamil last updated on 25/Oct/20 $${Differential}\:{Equation}\: \\ $$$$\left(\mathrm{1}\:−\:{x}\right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:{x}\frac{{dy}}{{dx}}\:−\:{xy}\:=\:\frac{\mathrm{1}}{\mathrm{1}\:−\:{x}}\:,\:{x}\:\neq\:\mathrm{1} \\ $$$${has}\:{the}\:{power}\:{series}\:{solution}\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-119472

Question Number 119472 by Engr_Jidda last updated on 24/Oct/20 Answered by Sach last updated on 24/Oct/20 $$\begin{cases}{{y}''+{xy}'−{y}={x}^{\mathrm{2}} +\mathrm{1}}\\{{y}\left(\mathrm{0}\right)=\mathrm{1}}\\{{y}'\left(\mathrm{0}\right)=\mathrm{2}}\end{cases} \\ $$$$\mathrm{1}^{\mathrm{rst}} \mathrm{step}:\:{let}'{s}\:{supose}\:{there}\:{is}\:{such}\:{a}\:{solution}\:{and}\:{that}\:{it}\:{is}\:{a}\:{serie} \\ $$$$\left({sorry}\:{for}\:{the}\:{spelling}\:{I}'{m}\:{french}\:{so}\:{I}\:{hope}\:{you}\:{understand}\:{what}\:{I}\:{wright}\:{and}\:{that}\:{I}\:{did}\:{not}\:{misunderstand}\:{your}\:{question}\right. \\ $$$${let}'{s}\:{call}\:\left({a}_{{k}}…