Question Number 182003 by MWSuSon last updated on 03/Dec/22 $$\mathrm{u}_{\mathrm{xx}} −\mathrm{u}_{\mathrm{x}} \mathrm{u}_{\mathrm{y}} −\mathrm{u}_{\mathrm{yy}} +\mathrm{2u}_{\mathrm{y}} −\mathrm{2u}_{\mathrm{x}} =\mathrm{e}^{\mathrm{2x}+\mathrm{3y}} +\mathrm{sin}\left(\mathrm{2x}+\mathrm{y}\right)+\mathrm{xy} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 116457 by bobhans last updated on 04/Oct/20 $$\mathrm{Use}\:\mathrm{Laplace}\:\mathrm{transform}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\: \\ $$$$\mathrm{initial}\:\mathrm{value}\:\mathrm{problem}\:\mathrm{ty}''+\left(\mathrm{4t}−\mathrm{2}\right)\mathrm{y}'+\left(\mathrm{13t}−\mathrm{4}\right)\mathrm{y}=\mathrm{0} \\ $$$$\mathrm{where}\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{0}\:\mathrm{and}\:\mathrm{y}'\left(\mathrm{0}\right)=\mathrm{0} \\ $$ Answered by Olaf last updated on 04/Oct/20 $$\mathrm{L}\left({y}''\right)\:=\:\mathrm{p}^{\mathrm{2}} \mathrm{L}\left(\mathrm{p}\right)−\mathrm{p}{y}\left(\mathrm{0}\right)−{y}'\left(\mathrm{0}\right)…
Question Number 116425 by bemath last updated on 04/Oct/20 $$\:\mathrm{y}'−\mathrm{y}\:=\:−\mathrm{2xy}^{\mathrm{3}} \\ $$ Commented by bemath last updated on 04/Oct/20 $$\mathrm{thank}\:\mathrm{you}\:\mathrm{mr}\:\mathrm{Bob}\:\mathrm{and}\:\mathrm{mr}\:\mathrm{Olaf} \\ $$ Answered by bobhans…
Question Number 116329 by bemath last updated on 03/Oct/20 $$\mathrm{solve}\:\mathrm{the}\:\mathrm{diff}\:\mathrm{equation}\:\: \\ $$$$\left(\mathrm{1}\right)\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{x}+\mathrm{3y}−\mathrm{5}}{\mathrm{x}−\mathrm{y}−\mathrm{1}} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{3y}−\mathrm{7x}−\mathrm{3}\right)\mathrm{dx}+\left(\mathrm{7y}−\mathrm{3x}−\mathrm{7}\right)\mathrm{dy}=\mathrm{0} \\ $$ Answered by mr W last updated on 03/Oct/20 $$\left(\mathrm{1}\right)\:\:\frac{{dy}}{{dx}}=\frac{{x}+\mathrm{3}{y}−\mathrm{5}}{{x}−{y}−\mathrm{1}}…
Question Number 181858 by KINMATICS last updated on 01/Dec/22 Answered by hmr last updated on 01/Dec/22 $${The}\:{general}\:{solution}\:{of} \\ $$$${the}\:{linear}\:{nonhomogeneous} \\ $$$${equation}\:{is}\:{equal}\:{to}: \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:{general}\:{solution}\:{of}\:{the}…
Question Number 181799 by amin96 last updated on 30/Nov/22 $$\:\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{difgerential}}\:\boldsymbol{{equation}} \\ $$$$\boldsymbol{{y}}\sqrt{\mathrm{1}+\left(\boldsymbol{{y}}'\right)^{\mathrm{2}} }=\boldsymbol{{y}}'\: \\ $$ Answered by mr W last updated on 30/Nov/22 $${y}^{\mathrm{2}} \left(\mathrm{1}+\left({y}'\right)^{\mathrm{2}}…
Question Number 181795 by ali009 last updated on 30/Nov/22 $${use}\:{laplace}\:{transform}\:{to}\:{slove}\: \\ $$$${y}''+\mathrm{4}{y}=\mathrm{5}{u}\left({t}−\mathrm{1}\right),{y}\left(\mathrm{0}\right)=\mathrm{0},{y}'\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 116105 by ShakaLaka last updated on 30/Sep/20 $${solve}\:{the}\:{Cauchy}-{Euler}\: \\ $$$${Differential}\:{Equation}\:{by} \\ $$$${substituting}\:{x}={e}^{{t}} \\ $$$${x}^{\mathrm{3}} \:\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }\:+\:\mathrm{2}{x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{2}{y}\:=\:\mathrm{10}{x}\:+\:\frac{\mathrm{10}}{{x}} \\ $$$$ \\…
Question Number 181605 by ibe222 last updated on 27/Nov/22 Commented by Mastermind last updated on 27/Nov/22 $$\mathrm{We}\:\mathrm{should}\:\mathrm{Differentiate}? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 116054 by Study last updated on 30/Sep/20 $$\left({x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{1}\right){dx}+\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{1}\right){dy}=\mathrm{0} \\ $$$${y}=? \\ $$ Commented by mohammad17 last updated on 30/Sep/20 $${M}\left({x},{y}\right)={x}^{\mathrm{2}}…