Question Number 72577 by aliesam last updated on 30/Oct/19 $${solve}\:{the}\:{equation} \\ $$$$ \\ $$$${z}\left({x}+{z}\right)\frac{\partial{z}}{\partial{x}}\:−\:{y}\left({y}+{z}\right)\frac{\partial{z}}{\partial{y}}\:=\:\mathrm{0} \\ $$$$ \\ $$$${where}\:{z}=\sqrt{{y}}\:{when}\:{x}=\mathrm{1} \\ $$ Commented by mind is power…
Question Number 6991 by Tawakalitu. last updated on 05/Aug/16 $${Solve}:\:\:\left(\mathrm{1}\:−\:{x}^{\mathrm{2}} \right)\:\frac{{dy}}{{dx}}\:+\:{xy}\:=\:{xp} \\ $$$$ \\ $$$$ \\ $$ Answered by Yozzii last updated on 05/Aug/16 $${x}\neq\mathrm{1}:\:{y}'+\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}}…
Question Number 6661 by Tawakalitu. last updated on 09/Jul/16 $${Solve}\:{this}\:{equation}\:{by}\:{reducing}\:{it}\:{from}\:{non}\:{homogeneous} \\ $$$${equation}\:{to}\:{homogeneous}\:{equation} \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}\left({x}\:+\:{y}\:−\:\mathrm{1}\right)}{\mathrm{3}{x}\:+\:{y}\:+\:\mathrm{1}} \\ $$$$ \\ $$$${Please}\:{help}\:{with}\:{this}\:{one}\:{too}. \\ $$$${i}\:{was}\:{trying}\:{your}\:{approah}\:{but}\:{not}\:{the}\:{same} \\ $$$$ \\ $$$${thanks}\:{for}\:{your}\:{help}. \\…
Question Number 6651 by Tawakalitu. last updated on 08/Jul/16 $${Solve}\:{this}\:{equation}\:{by}\:{reducing}\:{it}\:{from}\:{non}\:{homogeneous} \\ $$$${equation}\:{to}\:{homogeneous}\:{equation}\: \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{{x}\:+\:{y}\:+\:\mathrm{3}}{{x}\:−\:{y}\:−\mathrm{5}} \\ $$ Commented by prakash jain last updated on 09/Jul/16 $$\mathrm{Substitue}\:{x}={u}+\mathrm{1}\:\mathrm{and}\:{y}={v}−\mathrm{4}…
Question Number 137624 by Lordose last updated on 04/Apr/21 $$\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}\:=\:\frac{\mathrm{6}\boldsymbol{\mathrm{xy}}+\boldsymbol{\mathrm{y}}^{\mathrm{2}} }{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6511 by Yozzii last updated on 30/Jun/16 $${Find}\:{the}\:{function}\:{y}\:{satisfying} \\ $$$${y}'+\frac{{c}_{\mathrm{1}} }{{y}\left({x}−{c}_{\mathrm{2}} \right)^{{n}} }={c}_{\mathrm{3}} \\ $$$${where}\:{n}\in\left(\mathbb{Z}−\left\{\mathrm{0}\right\}\right),\:{c}_{\mathrm{1}} \:{and}\:{c}_{\mathrm{3}} \:{are}\:{nonzero} \\ $$$${constants},\:{and}\:{c}_{\mathrm{2}} \:{is}\:{constant}. \\ $$ Terms…
Question Number 6505 by nburiburu last updated on 29/Jun/16 $${Find}\:{general}\:{solution}\:{for} \\ $$$${y}'\:+{P}\left({x}\right)\centerdot{y}^{\mathrm{2}} ={Q}\left({x}\right) \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 137558 by liberty last updated on 04/Apr/21 $$\left({x}+{y}\right){dx}\:+\:\left({x}+{y}^{\mathrm{2}} \right){dy}\:=\:\mathrm{0}\: \\ $$ Answered by Ñï= last updated on 04/Apr/21 $$\left({x}+{y}\right){dx}+\left({x}+{y}^{\mathrm{2}} \right){dy} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{d}\left({x}^{\mathrm{2}} \right)+{ydx}+{xdy}+\frac{\mathrm{1}}{\mathrm{3}}{d}\left({y}^{\mathrm{3}}…
Question Number 6457 by sanusihammed last updated on 27/Jun/16 $${Solve}. \\ $$$${y}^{''} \:−\:\mathrm{4}{y}'\:+\:\mathrm{4}{y}\:\:=\:\:{sin}\mathrm{2}{x}\: \\ $$ Answered by nburiburu last updated on 27/Jun/16 $${homogeneus}\:{solution}: \\ $$$${r}^{\mathrm{2}}…
Question Number 71983 by device4438043516@gmail.com last updated on 23/May/20 $$ \\ $$ Answered by Henri Boucatchou last updated on 23/Oct/19 $$\boldsymbol{{d}}\left(\boldsymbol{{e}}^{\boldsymbol{{vlnu}}} \right)\:=\:\boldsymbol{{u}}^{\boldsymbol{{v}}} \:\boldsymbol{{d}}\left(\boldsymbol{{vlnu}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\boldsymbol{{u}}^{\boldsymbol{{v}}}…