Question Number 68133 by mr W last updated on 05/Sep/19 $${solve}\:{y}''={y}'{y} \\ $$ Answered by mind is power last updated on 05/Sep/19 $$\Rightarrow{y}^{'} =\frac{{y}^{\mathrm{2}} }{\mathrm{2}}+{s}…
Question Number 68113 by Joel122 last updated on 05/Sep/19 $$\mathrm{Solve} \\ $$$${y}.{y}''\:=\:\mathrm{3}\left({y}'\right)^{\mathrm{2}} \\ $$ Answered by Smail last updated on 05/Sep/19 $$\Leftrightarrow\frac{{y}''}{{y}'}=\mathrm{3}\frac{{y}'}{{y}} \\ $$$${ln}\mid{y}'\mid=\mathrm{3}{ln}\mid{y}\mid+{c} \\…
Question Number 133631 by liberty last updated on 23/Feb/21 $$\mathrm{y}'\:=\:\frac{\mathrm{bx}+\mathrm{ay}}{\mathrm{ax}+\mathrm{by}} \\ $$ Answered by TheSupreme last updated on 23/Feb/21 $${caso}\:\mathrm{1}:\:{b}=\mathrm{0}\: \\ $$$${y}'=\frac{{ay}}{{ax}}=\frac{{y}}{{x}} \\ $$$${ln}\left({y}\right)={ln}\left({x}\right)+{c} \\…
Question Number 133570 by Ahmed1hamouda last updated on 23/Feb/21 Commented by Ahmed1hamouda last updated on 23/Feb/21 Solve the differential equations Commented by EDWIN88 last updated on 23/Feb/21 $$…
Question Number 67991 by ramirez105 last updated on 03/Sep/19 Commented by mathmax by abdo last updated on 03/Sep/19 $${xy}\:{dx}+\mathrm{2}\left({x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \right){dy}\:=\mathrm{0}\:\Rightarrow\mathrm{2}\left({x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \right){dy}\:=−{xydx}\:\Rightarrow \\ $$$$\mathrm{2}\frac{{dy}}{{y}}\:=\frac{−{xdx}}{{x}^{\mathrm{2}}…
Question Number 133508 by Ahmed1hamouda last updated on 22/Feb/21 Commented by Ahmed1hamouda last updated on 22/Feb/21 $$\boldsymbol{\mathrm{S}}\mathrm{olve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equations} \\ $$ Answered by Olaf last updated on…
Question Number 67939 by ramirez105 last updated on 02/Sep/19 Commented by mr W last updated on 02/Sep/19 $${sir},\:{you}\:{got}\:{y}^{\mathrm{2}} \left({y}+\mathrm{2}{x}\right)={C},\:{but}\:{this} \\ $$$${doesn}'{t}\:{satisfy}\:{the}\:{original}\:{equ}. \\ $$$${is}\: \\ $$$$\frac{{dy}}{{y}}\:=−\frac{{dx}}{\mathrm{2}{x}+\mathrm{3}{y}}\:\Rightarrow\int\:\frac{{dy}}{{y}}\:=−\int\frac{{dx}}{\mathrm{2}{x}+\mathrm{3}{y}}\:+{c}…
Question Number 67902 by ramirez105 last updated on 01/Sep/19 $${differential}\:{equation} \\ $$$${homogenous}. \\ $$$$ \\ $$$${please}\:{answer}\:{this}.{with}\:{p}.{s}. \\ $$$${xydx}+\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$$${x}=\mathrm{0} \\ $$$${y}=\mathrm{1} \\…
Question Number 67900 by ramirez105 last updated on 02/Sep/19 $${homogenous}\:{differential}\:{equation}. \\ $$$${please}\:{answer}. \\ $$$${y}\left({x}^{\mathrm{2}} +{xy}−\mathrm{2}{y}^{\mathrm{2}} \right){dx}+{x}\left(\mathrm{3}{y}^{\mathrm{2}} −{xy}−{x}^{\mathrm{2}} \right)\mathrm{2}{y}=\mathrm{0} \\ $$$$ \\ $$$${can}\:{someone}\:{answer}\:{this}?? \\ $$ Terms…
Question Number 67899 by ramirez105 last updated on 01/Sep/19 $${homogenous}\:{differential}\:{equation}. \\ $$$$ \\ $$$$\left(\mathrm{2}{xy}+{y}^{\mathrm{2}} \right){dr}−\mathrm{2}{x}^{\mathrm{2}} {dy}=\mathrm{0} \\ $$$${y}={e} \\ $$$${x}={e} \\ $$ Commented by AnJan_Math_Max…