Question Number 67902 by ramirez105 last updated on 01/Sep/19 $${differential}\:{equation} \\ $$$${homogenous}. \\ $$$$ \\ $$$${please}\:{answer}\:{this}.{with}\:{p}.{s}. \\ $$$${xydx}+\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$$${x}=\mathrm{0} \\ $$$${y}=\mathrm{1} \\…
Question Number 67900 by ramirez105 last updated on 02/Sep/19 $${homogenous}\:{differential}\:{equation}. \\ $$$${please}\:{answer}. \\ $$$${y}\left({x}^{\mathrm{2}} +{xy}−\mathrm{2}{y}^{\mathrm{2}} \right){dx}+{x}\left(\mathrm{3}{y}^{\mathrm{2}} −{xy}−{x}^{\mathrm{2}} \right)\mathrm{2}{y}=\mathrm{0} \\ $$$$ \\ $$$${can}\:{someone}\:{answer}\:{this}?? \\ $$ Terms…
Question Number 67899 by ramirez105 last updated on 01/Sep/19 $${homogenous}\:{differential}\:{equation}. \\ $$$$ \\ $$$$\left(\mathrm{2}{xy}+{y}^{\mathrm{2}} \right){dr}−\mathrm{2}{x}^{\mathrm{2}} {dy}=\mathrm{0} \\ $$$${y}={e} \\ $$$${x}={e} \\ $$ Commented by AnJan_Math_Max…
Question Number 133403 by Engr_Jidda last updated on 21/Feb/21 $${verify}\:{that}\:\varrho^{{x}} \:{and}\:{x}\:{are}\:{the}\:{solution} \\ $$$${of}\:{the}\:{homogeneous}\:{equation}\:{corresponding} \\ $$$${to}\:\left(\mathrm{1}−{x}\right){y}^{\mathrm{2}} +{xy}^{\mathrm{1}} −{y}=\mathrm{2}\left({x}−\mathrm{1}\right)^{\mathrm{2}} \varrho^{{x}\:} ,\:\mathrm{0}<{x}<\mathrm{1} \\ $$$${and}\:{find}\:{the}\:{general}\:{solution}. \\ $$ Terms of…
Question Number 133400 by Engr_Jidda last updated on 21/Feb/21 $${fine}\:{the}\:{solution}\:{of}\:{the}\:{differential} \\ $$$${equation}\:{y}^{\mathrm{2}} +\mathrm{9}{y}=\mathrm{9}{sec}^{\mathrm{2}} \mathrm{3}{x},\:\mathrm{0}<{x}<\frac{\pi}{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 133353 by Ahmed1hamouda last updated on 21/Feb/21 Commented by Ahmed1hamouda last updated on 21/Feb/21 $$\:\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{differential}}\:\boldsymbol{{equation}}\mathrm{s} \\ $$ Answered by mathmax by abdo last…
Question Number 67762 by ugwu Kingsley last updated on 31/Aug/19 $${solve}\:{by}\:{the}\:{complex}\:{method} \\ $$$$ \\ $$$$ \\ $$$${y}^{{iv}} +\mathrm{3}{y}^{\mathrm{3}} +\mathrm{2}{y}^{\mathrm{2}} =−\mathrm{3}{sin}\mathrm{2}{x} \\ $$$$ \\ $$$$ \\…
Question Number 133296 by rs4089 last updated on 21/Feb/21 Answered by SEKRET last updated on 21/Feb/21 $$\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}''+\mathrm{3}\boldsymbol{\mathrm{xy}}'+\boldsymbol{\mathrm{y}}=\:\frac{\mathrm{1}}{\left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} } \\ $$$$\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}''+\mathrm{3}\boldsymbol{\mathrm{xy}}'+\boldsymbol{\mathrm{y}}=\mathrm{0}\:\:\:\:\boldsymbol{\mathrm{y}}=\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{m}}} \:\:\:\:\boldsymbol{\mathrm{y}}'=\boldsymbol{\mathrm{mx}}^{\boldsymbol{\mathrm{m}}−\mathrm{1}} \:\:\:\:\:\boldsymbol{\mathrm{y}}''=\boldsymbol{\mathrm{m}}\left(\boldsymbol{\mathrm{m}}−\mathrm{1}\right)\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{m}}−\mathrm{2}} \\…
Question Number 67761 by ugwu Kingsley last updated on 31/Aug/19 $${solve}\:{by}\:{laplace}\:{transform}\:{method} \\ $$$$ \\ $$$$\overset{\bullet\bullet\:} {{x}}\:+{w}_{\mathrm{0}} ^{\mathrm{2}} {x}={coswt}\:\:\:{x}\left(\mathrm{0}\right)={x}_{\mathrm{0}} \:\overset{\bullet} {{x}}\left(\mathrm{0}\right)={v}_{\mathrm{0}} \:\:\:\:\:{w}^{\mathrm{2}} \neq\:{w}_{\mathrm{0}} ^{\mathrm{2}} \\ $$…
Question Number 67759 by ugwu Kingsley last updated on 31/Aug/19 $${using}\:{variation}\:{of}\:{parameters}\:{method} \\ $$$$ \\ $$$$\left({x}+\mathrm{2}\right)^{\mathrm{2}} {y}''−\left({x}+\mathrm{2}\right){y}'=\mathrm{2}{x}+\mathrm{4} \\ $$$$ \\ $$$$ \\ $$$${x}^{\mathrm{2}} {y}''+\mathrm{2}{xy}'−\mathrm{2}{y}={x}^{\mathrm{2}} {lnx}+\mathrm{3}{x} \\…