Question Number 2159 by Yozzis last updated on 05/Nov/15 $${Suppose}\:{that}\:{y}_{{n}\:} \:{satisfies}\:{the}\:{equations}\: \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\frac{{d}^{\mathrm{2}} {y}_{{n}} }{{dx}^{\mathrm{2}} }−{x}\frac{{dy}_{{n}} }{{dx}}+{n}^{\mathrm{2}} {y}=\mathrm{0},\:{y}_{{n}} \left(\mathrm{1}\right)=\mathrm{1} \\ $$$${y}_{{n}} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} {y}_{{n}} \left(−{x}\right).…
Question Number 2054 by Yozzi last updated on 01/Nov/15 $${Find}\:{all}\:{real}\:{solutions}\:{y}\:{to}\:{the}\:{equation} \\ $$$$\:\:\:\:{sin}\left(\frac{{dy}}{{dx}}\right)+{sin}\left(\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right)=\mathrm{0}\:. \\ $$$${For}\:{each}\:{solution}\:{determine}\:{the}\:{value}\:{of} \\ $$$${Q}={max}\left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{sin}\left(\frac{{d}^{{r}} {y}}{{dx}^{{r}} }\right)\right),\:{giving}\:{the}\:{value}\left({s}\right) \\ $$$${of}\:{x}\:{for}\:{which}\:{Q}\:{arises}. \\…
Question Number 2052 by Yozzi last updated on 01/Nov/15 $${Find}\:{the}\:{solution}\:{of}\:{the}\:{d}.{e} \\ $$$$\:\left({sinhx}\right)\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} +\mathrm{2}\frac{{dy}}{{dx}}−{sinhx}=\mathrm{0} \\ $$$${which}\:{satisfies}\:{y}=\mathrm{0}\:{at}\:{x}=\mathrm{0}. \\ $$ Commented by prakash jain last updated on 01/Nov/15…
Question Number 2051 by Yozzi last updated on 01/Nov/15 $${Solve}\:{the}\:{d}.{e}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} \frac{{dy}}{{dx}}+{xy}+{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{1} \\ $$$${by}\:{letting}\:{y}=\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{v}}\:{where} \\ $$$${v}\:{is}\:{a}\:{function}\:{of}\:{x}.\: \\ $$ Answered by 123456 last…
Question Number 2050 by Yozzi last updated on 01/Nov/15 $${Solve}\:{the}\:{d}.{e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{dy}}{{dx}}−{y}−\mathrm{3}{y}^{\mathrm{2}} =−\mathrm{2}\: \\ $$$${by}\:{letting}\:{y}=\frac{−\mathrm{1}}{\mathrm{3}{u}}\left(\frac{{du}}{{dx}}\right). \\ $$ Answered by 123456 last updated on 01/Nov/15 $${y}'=\frac{{dy}}{{dx}}…
Question Number 1898 by 123456 last updated on 22/Oct/15 $$\frac{{df}}{{dt}}=\alpha{f}+\beta{t}+\gamma \\ $$$${f}\left({t}\right)=?? \\ $$ Answered by Yozzy last updated on 22/Oct/15 $$\frac{{df}}{{dt}}=\alpha{f}+\beta{t}+\gamma\:\:\:{where}\:{I}\:{assume}\:{that}\:\alpha,\beta,\gamma\:{are}\:{constants}.\:{This}\:{equation}\:{may}\:{be} \\ $$$${rewritten}\:{as}\:\:\:\:\:\frac{{df}}{{dt}}−\alpha{f}=\beta{t}+\gamma\:\:\left(\ast\right).\:{The}\:{equation}\:{is}\:{a}\:{first}\:{order}\:{linear}\:{non}−{homogeneous} \\…
Question Number 67349 by Joel122 last updated on 26/Aug/19 $$\mathrm{Solve}\:\mathrm{for}\:{y}\left({x}\right) \\ $$$${xy}'\:=\:{y}\:+\:\mathrm{2}{x}^{\mathrm{3}} \mathrm{sin}^{\mathrm{2}} \left(\frac{{y}}{{x}}\right) \\ $$ Answered by mind is power last updated on 26/Aug/19…
find-the-series-solution-of-the-ordinary-differential-equation-y-2-2xy-1-3y-x-2-1-y-0-1-and-y-1-0-2-
Question Number 132881 by Engr_Jidda last updated on 17/Feb/21 $${find}\:{the}\:{series}\:{solution}\:{of} \\ $$$${the}\:{ordinary}\:{differential}\:{equation} \\ $$$${y}^{\mathrm{2}} +\mathrm{2}{xy}^{\mathrm{1}} −\mathrm{3}{y}={x}^{\mathrm{2}} −\mathrm{1} \\ $$$${y}\left(\mathrm{0}\right)=\mathrm{1}\:{and}\:{y}^{\mathrm{1}} \left(\mathrm{0}\right)=\mathrm{2} \\ $$ Terms of Service…
Question Number 67336 by TawaTawa last updated on 25/Aug/19 $$\mathrm{If}\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{e}^{−\mathrm{t}} \:\:\frac{\mathrm{dy}}{\mathrm{dt}}\:\:,\:\:\:\:\:\:\mathrm{find}\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} } \\ $$ Commented by mr W last updated on 26/Aug/19 $${where}\:{did}\:{you}\:{get}\:{this}\:{question}? \\…
Question Number 1743 by 123456 last updated on 12/Sep/15 $${u}'\left({v}−{v}'\right)+{uv}'=\mathrm{0} \\ $$$${u}=? \\ $$ Commented by Rasheed Ahmad last updated on 13/Sep/15 $${u}'\left({v}−{v}'\right)+{uv}'=\mathrm{0} \\ $$$${u}'{v}+{uv}'−{u}'{v}'=\mathrm{0}…