Menu Close

Category: Differential Equation

find-the-series-solution-of-the-ordinary-differential-equation-y-2-2xy-1-3y-x-2-1-y-0-1-and-y-1-0-2-

Question Number 132881 by Engr_Jidda last updated on 17/Feb/21 $${find}\:{the}\:{series}\:{solution}\:{of} \\ $$$${the}\:{ordinary}\:{differential}\:{equation} \\ $$$${y}^{\mathrm{2}} +\mathrm{2}{xy}^{\mathrm{1}} −\mathrm{3}{y}={x}^{\mathrm{2}} −\mathrm{1} \\ $$$${y}\left(\mathrm{0}\right)=\mathrm{1}\:{and}\:{y}^{\mathrm{1}} \left(\mathrm{0}\right)=\mathrm{2} \\ $$ Terms of Service…

f-x-f-x-dx-ln-sec-x-c-f-x-

Question Number 1597 by Rasheed Ahmad last updated on 25/Aug/15 $$\int\frac{{f}\left({x}\right)}{{f}\:'\left({x}\right)}{dx}={ln}\:{sec}\:{x}+{c} \\ $$$${f}\left({x}\right)=? \\ $$ Answered by 123456 last updated on 25/Aug/15 $$\int\frac{{y}}{{dy}/{dx}}{dx}=\mathrm{ln}\:\mathrm{sec}\:{x}+{c} \\ $$$$\frac{{d}}{{dx}}\left[\int\frac{{y}}{{dy}/{dx}}{dx}\right]=\frac{{d}}{{dx}}\left[\mathrm{ln}\:\mathrm{sec}\:{x}+{c}\right]…

Solve-the-following-D-E-dy-dx-2-2y-2-0-Does-d-2-y-dx-2-2-2y-2-0-have-any-solutions-other-than-y-1-

Question Number 1575 by 112358 last updated on 21/Aug/15 $${Solve}\:{the}\:{following}\:{D}.{E}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{2}=\mathrm{0}\: \\ $$$${Does}\:\:\left(\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right)^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{2}=\mathrm{0}\:{have} \\ $$$${any}\:{solutions}\:{other}\:{than} \\ $$$${y}=−\mathrm{1}\:? \\ $$ Commented…

Solve-differential-equations-1-x-3-1-y-xy-x-2-x-2-1-y-xy-2x-1-x-2-0-3-x-2-lnx-y-y-0-know-that-y-lnx-is-the-answer-

Question Number 132432 by Chhing last updated on 14/Feb/21 $$ \\ $$$$\:\:\mathrm{Solve}\:\:\mathrm{differential}\:\:\mathrm{equations} \\ $$$$\:\:\:\:\mathrm{1}/\:\left(\mathrm{x}^{\mathrm{3}} −\mathrm{1}\right)\mathrm{y}'+\mathrm{xy}=\mathrm{x} \\ $$$$\:\:\:\:\mathrm{2}/\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\mathrm{y}'−\mathrm{xy}+\frac{\mathrm{2x}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\:\:\:\:\mathrm{3}/\:\mathrm{x}^{\mathrm{2}} \left(\mathrm{lnx}\right)\mathrm{y}''+\mathrm{y}=\mathrm{0}\:,\:\mathrm{know}\:\mathrm{that}\:\mathrm{y}=\mathrm{lnx}\:\mathrm{is}\:\mathrm{the}\:\mathrm{answer} \\ $$$$ \\…