Menu Close

Category: Differentiation

Question-144554

Question Number 144554 by imjagoll last updated on 26/Jun/21 Answered by Olaf_Thorendsen last updated on 26/Jun/21 $$\left.{a}\right)\:\Delta\:=\:\left[\mathrm{O}{x}\right) \\ $$$$\mathrm{I}_{\Delta} \:=\:\int{r}^{\mathrm{2}} {dm}\:=\:\int{r}^{\mathrm{2}} \delta{dS} \\ $$$$\mathrm{I}_{\Delta} \:=\:\delta\int_{\mathrm{0}}…

A-rectangular-box-open-at-the-top-is-to-have-a-volume-of-32-cube-feet-What-must-be-the-dimensions-so-that-the-total-surface-is-a-minimum-

Question Number 144532 by EDWIN88 last updated on 26/Jun/21 $$\mathrm{A}\:\mathrm{rectangular}\:\mathrm{box},\mathrm{open}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{top}\:\mathrm{is}\:\mathrm{to}\:\mathrm{have}\:\mathrm{a}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{32}\:\mathrm{cube}\:\mathrm{feet} \\ $$$$\mathrm{What}\:\mathrm{must}\:\mathrm{be}\:\mathrm{the}\:\mathrm{dimensions} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{total}\:\mathrm{surface}\:\mathrm{is}\:\mathrm{a}\:\mathrm{minimum}? \\ $$ Answered by liberty last updated on 26/Jun/21…

Find-the-shortest-distance-from-the-origin-to-the-hyperbola-x-2-8xy-7y-2-225-z-0-

Question Number 144534 by imjagoll last updated on 26/Jun/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{from}\: \\ $$$$\mathrm{the}\:\mathrm{origin}\:\mathrm{to}\:\mathrm{the}\:\mathrm{hyperbola}\: \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{8xy}+\mathrm{7y}^{\mathrm{2}} =\mathrm{225}\:,\mathrm{z}=\mathrm{0}\: \\ $$ Answered by liberty last updated on 26/Jun/21…

x-1-h-x-dx-x-3-sin-2x-x-2-1-c-h-1-

Question Number 144389 by liberty last updated on 25/Jun/21 $$\:\int\:\left(\mathrm{x}−\mathrm{1}\right)\mathrm{h}\left(\mathrm{x}\right)\mathrm{dx}\:=\:\mathrm{x}^{\mathrm{3}} −\mathrm{sin}\:\mathrm{2x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:+\:\mathrm{c}\: \\ $$$$\Rightarrow\mathrm{h}\:'\left(\mathrm{1}\right)=\:? \\ $$ Answered by mathmax by abdo last updated on 25/Jun/21…