Question Number 76952 by ~blr237~ last updated on 01/Jan/20 $$\mathrm{show}\:\mathrm{that}\: \\ $$$$\sqrt{\mathrm{1}+\:\mathrm{2017}×\mathrm{2018}×\mathrm{2019}×\mathrm{2020}\:}\:\in\:\mathbb{N} \\ $$ Answered by MJS last updated on 01/Jan/20 $$\mathrm{1}+{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)= \\ $$$$={x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{3}}…
Question Number 76941 by ~blr237~ last updated on 01/Jan/20 $$\mathrm{We}\:\mathrm{usually}\:\mathrm{have}\:\mathrm{to}\:\mathrm{write}\:\mathrm{the}\:\mathrm{date}\:\mathrm{in}\:\mathrm{this}\:\mathrm{form}\:\mathrm{01}/\mathrm{01}/\mathrm{2020} \\ $$$$\mathrm{to}\:\mathrm{mean}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{january}\:\mathrm{2020}\: \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{first}\:\mathrm{date}\:\mathrm{that}\:\mathrm{is}\:\mathrm{written}\:\mathrm{in}\:\mathrm{this}\:\mathrm{form}\:\mathrm{with}\:\mathrm{eight}\:\mathrm{different}\:\mathrm{figures}\:? \\ $$$$\mathrm{an}\:\mathrm{example}\::\:\mathrm{25}/\mathrm{09}/\mathrm{1873}\:\: \\ $$$$“\mathrm{i}\:\mathrm{wish}\:\mathrm{you}\:\mathrm{a}\:\mathrm{sweet}\:\mathrm{and}\:\mathrm{happy}\:\mathrm{new}\:\mathrm{year}\:\mathrm{to}\:\mathrm{all}\:\mathrm{of}\:\mathrm{you}'' \\ $$ Commented by mr W…
Question Number 76919 by jagoll last updated on 01/Jan/20 $${what}\:{range}\: \\ $$$${the}\:{function}\:{y}\:=\:\frac{{x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +{x}}}\:? \\ $$ Answered by MJS last updated on 01/Jan/20 $$\mathrm{defined}\:\mathrm{for}\:−\infty<{x}<−\mathrm{1}\vee\mathrm{0}<{x}<+\infty \\ $$$$\frac{{d}}{{dx}}\left[\frac{{x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}}…
Question Number 76842 by jagoll last updated on 31/Dec/19 $$ \\ $$$${what}\:{is}\:{solution}\:{y}^{''\:} +\:\:{y}\:=\:\mathrm{0}\:. \\ $$ Commented by mathmax by abdo last updated on 31/Dec/19 $${the}\:{caraceristc}\:{equation}\:{is}\:{r}^{\mathrm{2}}…
Question Number 142349 by mnjuly1970 last updated on 30/May/21 $$ \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\zeta\left(\mathrm{2}{n}+\mathrm{2}\right)\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}^{{n}} }=? \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 142318 by mnjuly1970 last updated on 29/May/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Nice}…\succcurlyeq\succcurlyeq\succcurlyeq\ast\ast\ast\preccurlyeq\preccurlyeq\preccurlyeq…{Calculus} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{1}−\sqrt[{\mathrm{3}}]{{x}}\:\right)\left(\mathrm{1}−\sqrt[{\mathrm{5}}]{{x}\:}\:\right)\left(\mathrm{1}−\sqrt[{\mathrm{7}}]{{x}}\:\right)}{{ln}\left(\:\sqrt[{\mathrm{3}}]{{x}\:\:}\:\right)}\:{dx}=? \\ $$$$\:\:\:\:\:\:\:….{m}.{n} \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 142275 by mnjuly1970 last updated on 29/May/21 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:…….{Advanced}\:\:…\ast\ast\ast\ast\ast\:…{Integral}…… \\ $$$$\:\:\:\:\:\:{Prove}\:\:{that}\:::\:\:\:\Phi\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}}{\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right){log}\left({x}\right)}{dx}= \\ $$$$\:\:\:{proof}:: \\ $$$$\:\:\:\:\:\:\Phi:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}^{\mathrm{3}} \right){log}\left({x}\right)}{dx}…
Question Number 142268 by alcohol last updated on 29/May/21 $$\int\frac{{e}^{{x}} }{{cosx}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 11151 by suci last updated on 14/Mar/17 $${f}\left({x}\right)=\mathrm{2}^{\frac{\mathrm{1}−{x}}{\mathrm{2}+{x}^{\mathrm{2}} }} \\ $$$${f}'\left({x}\right)=…??? \\ $$ Answered by ajfour last updated on 14/Mar/17 $$=\:\mathrm{2}^{\frac{\mathrm{1}−{x}}{\mathrm{2}+{x}^{\mathrm{2}} }} \left(\mathrm{ln}\:\mathrm{2}\right)\left[\frac{{x}^{\mathrm{2}}…
Question Number 11150 by suci last updated on 14/Mar/17 $${f}\left({x}\right)=\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{{sin}\mathrm{2}{x}} \\ $$$${f}'\left({x}\right)=…??? \\ $$ Answered by ajfour last updated on 14/Mar/17 $$=\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{sin}\:\mathrm{2}{x}} \:\left\{\left(\mathrm{2cos}\:\mathrm{2}{x}\right)\mathrm{ln}\:\left({x}^{\mathrm{2}}…