Menu Close

Category: Differentiation

nice-calculus-I-lim-x-0-cos-x-1-3-cot-x-solution-sin-x-x-x-0-

Question Number 139949 by mnjuly1970 last updated on 02/May/21 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:………{nice}\:….\:\ast\:….\ast\:….\:\ast\:….{calculus}\left({I}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \left(\sqrt[{\mathrm{3}}]{{cos}\left(\sqrt{{x}}\:\right.}\:\right)^{{cot}\left({x}\right)} =?? \\ $$$$\:\:\:\:\:\:\:\:{solution}……… \\ $$$$\:\:\:\:\:\:\:{sin}\left({x}\right)\:\approx\:{x}\:\:\:\:\:\:\:\:\left({x}\:\rightarrow\:\mathrm{0}\:\right) \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}:=\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \left\{\left({cos}\left(\sqrt{{x}}\:\right)\right)^{\frac{\mathrm{1}}{\mathrm{3}}}…

I-2-sin-x-x-dx-dI-d-

Question Number 139878 by bramlexs22 last updated on 02/May/21 $$\:\:\:\:\:\:\:\mathrm{I}\left(\alpha\right)\:=\:\underset{\alpha} {\overset{\alpha^{\mathrm{2}} } {\int}}\:\frac{\mathrm{sin}\:\alpha\mathrm{x}}{\mathrm{x}}\:\mathrm{dx}\: \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{dI}\left(\alpha\right)}{\mathrm{d}\alpha}\:=? \\ $$ Answered by EDWIN88 last updated on 02/May/21 $$\:\:\:\:\:\frac{\mathrm{dI}}{\mathrm{d}\alpha}\:=\:\underset{\alpha}…

prove-0-1-ln-1-1-x-x-dx-4-ln-e-2-

Question Number 139851 by mnjuly1970 last updated on 01/May/21 $$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:…… \\ $$$$\:\:\:\:\:\:\Phi=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)}{\:\sqrt{{x}}}{dx}=\mathrm{4}\:{ln}\left(\frac{{e}}{\mathrm{2}}\right)\:…\checkmark \\ $$ Answered by mindispower last updated on 01/May/21…

Question-74235

Question Number 74235 by aliesam last updated on 20/Nov/19 Answered by Joel578 last updated on 20/Nov/19 $$\mid{x}\mid\:=\:\sqrt{{x}^{\mathrm{2}} } \\ $$$${f}\left({x}\right)\:=\:\sqrt{\left({x}^{\mathrm{2}} \:−\:\mathrm{3}\right)^{\mathrm{2}} } \\ $$$${f}\:'\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\left({x}^{\mathrm{2}} \:−\:\mathrm{3}\right)^{\mathrm{2}}…

i-0-5-1-cotan-20-i-8-

Question Number 139555 by snipers237 last updated on 28/Apr/21 $$\:\:\underset{{i}=\mathrm{0}} {\overset{\mathrm{5}} {\prod}}\left(\mathrm{1}−{cotan}\left(\mathrm{20}+{i}\right)\right)\:\:\overset{?} {=}\:\mathrm{8} \\ $$ Answered by mr W last updated on 28/Apr/21 $$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{20}°}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{25}°}\right) \\…

advanced-calculus-n-1-sin-n-n-3-

Question Number 139479 by mnjuly1970 last updated on 27/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:….\bigstar\bigstar\bigstar…..{calculus}….. \\ $$$$\:\:\:\:\:\:\:\:\:\:\: :=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{{sin}\left({n}\right)}{{n}}\right)^{\mathrm{3}} =?\: \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$ Answered by Dwaipayan Shikari last…

prove-that-n-0-1-3n-e-3-2-3-e-cos-3-2-

Question Number 139457 by mnjuly1970 last updated on 27/Apr/21 $$\:_{} \:\:\: \\ $$$$\:\:\:\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}\:=\frac{{e}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{3}\sqrt{{e}}}\:{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$ \\ $$ Answered by Dwaipayan Shikari…