Question Number 73203 by Tanmay chaudhury last updated on 08/Nov/19 Commented by kaivan.ahmadi last updated on 08/Nov/19 $${xsin}\frac{\mathrm{1}}{{x}}=\mathrm{1}\Rightarrow{sin}\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{{x}}\Rightarrow\frac{\mathrm{1}}{{x}}=\mathrm{0}\Rightarrow{there}\:{is}\:{no}\:{root} \\ $$$${so}\:{A}\:{has}\:{exactly}\:{one}\:{element},\:{A}=\left\{\mathrm{0}\right\} \\ $$ Terms of Service…
Question Number 138552 by mnjuly1970 last updated on 14/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:\:\:\:\:\:{mathemayics}\:… \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({tan}\left({x}\right)\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{{e}}\right) \\ $$$$\:\:……. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 7401 by txsnims last updated on 27/Aug/16 $${find}\:{the}\:{turning}\:{point}\:{on}\:{the}\:{curve}\:{y}=\frac{\mathrm{16}}{{x}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}\:}\:\:{and}\:{determine}\:{wether}\:{it}\:{is}\:{a}\:{point}\:{of}\:{maximum}\:{or}\:{minimum} \\ $$$$ \\ $$ Answered by FilupSmith last updated on 27/Aug/16 $${y}=\mathrm{16}{x}^{−\mathrm{1}} +\mathrm{3}^{−\mathrm{1}} {x}^{\mathrm{3}}…
Question Number 72908 by mathmax by abdo last updated on 04/Nov/19 $${find}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{d}\theta}{{x}^{\mathrm{2}} −\mathrm{2}{x}\:{cos}\theta\:+\mathrm{1}}\:\:{with}\:{x}\:{real}. \\ $$ Commented by mind is power last updated on…
Question Number 72884 by mhmd last updated on 04/Nov/19 $${find}\:{the}\:{area}\:{of}\:{the}\:{region}\:{bounded}\:{by}\:{the}\:{semicircle}\:{y}=\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:{and}\:{the}\:{x}=+−{a}\:\:{and}\:{the}\:{line}\:{y}=−{a}\:?\:{by}\:{using}\:{intigiral} \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$ Commented by kaivan.ahmadi last updated on 04/Nov/19 $$\int_{−{a}} ^{{a}}…
Question Number 72886 by mhmd last updated on 04/Nov/19 $${let}\:{w}={f}\left({x},\:{y}\right)\:{be}\:{a}\:{differentiable}\:{function}\:{where}\:{x}={rcos}\theta\:{and}\:{y}={rsin}\theta\:{show}\:{that}\:\left({f}_{{x}} \right)^{\mathrm{2}} +\left({f}_{{y}} \right)^{\mathrm{2}} =\left({w}_{{x}} \right)^{\mathrm{2}} +\mathrm{1}/{r}^{\mathrm{2}} \left({w}_{{y}} \right)^{\mathrm{2}} ? \\ $$$${help}\:{me}\:{sir}\: \\ $$ Answered by…
Question Number 72880 by mhmd last updated on 04/Nov/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 72883 by mhmd last updated on 04/Nov/19 $${if}\:{w}={f}\left({u}\:{and}\:{v}\right)\:{where}\:{f}_{{uu}} +{f}_{{vv}} =\mathrm{0}\:{and}\:{u}=\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)/\mathrm{2}\:{and}\:{v}={xy}\:{show}\:{that}\:{w}_{{xx}} +{w}_{{yy}} =\mathrm{0}\:? \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$ Answered by mind is power…
Question Number 72877 by mhmd last updated on 04/Nov/19 $${by}\:{using}\:{theorem}\:{demwover}\:{find}\:\:{x}^{\mathrm{4}} =\mathrm{1}? \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$ Commented by mathmax by abdo last updated on 04/Nov/19 $${roots}\:{at}\:{C}\:\:\:\:{x}={z}={r}\:{e}^{{i}\theta}…
Question Number 138377 by mnjuly1970 last updated on 13/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:……\:{advanced}\:…\:…\:…\:{calculus}…… \\ $$$$\:\:\:{evaluate}:::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }\:.\left(\mathrm{2}+{x}\right)}\:{dx}=?? \\ $$$$\:\: \\ $$ Terms of…