Menu Close

Category: Differentiation

f-x-y-ax-2-by-2-How-do-you-find-where-the-gradient-is-zero-for-multivariable-funtions-

Question Number 7040 by FilupSmith last updated on 07/Aug/16 $${f}\left({x},{y}\right)={ax}^{\mathrm{2}} +{by}^{\mathrm{2}} \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{find}\:\mathrm{where}\:\mathrm{the}\:\mathrm{gradient} \\ $$$$\mathrm{is}\:\mathrm{zero}\:\mathrm{for}\:\mathrm{multivariable}\:\mathrm{funtions}? \\ $$ Commented by Yozzii last updated on 07/Aug/16 $$\bigtriangledown{f}={grad}\:{f}=\begin{pmatrix}{\frac{\partial{f}}{\partial{x}}}\\{\frac{\partial{f}}{\partial{y}}}\end{pmatrix}…

tan-3-x-sec-3-x-dx-

Question Number 138009 by bobhans last updated on 09/Apr/21 $$\int\:\mathrm{tan}\:^{\mathrm{3}} \left({x}\right)\:\sqrt{\mathrm{sec}\:^{\mathrm{3}} \left({x}\right)}\:{dx}\:=? \\ $$ Answered by EDWIN88 last updated on 09/Apr/21 $$\mathcal{E}\:=\:\int\:\mathrm{tan}\:^{\mathrm{3}} \left({x}\right)\:\mathrm{sec}\:\left({x}\right)\:\sqrt{\mathrm{sec}\:\left({x}\right)}\:{dx} \\ $$$$=\:\int\:\mathrm{tan}\:\left({x}\right)\mathrm{sec}\:\left({x}\right)\left(\mathrm{sec}\:^{\mathrm{2}}…

Question-137650

Question Number 137650 by bemath last updated on 05/Apr/21 Answered by bemath last updated on 05/Apr/21 $${By}\:{Langrange}\:{multiplier} \\ $$$${f}\left({x},{y},\lambda\right)=\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\lambda\left(\mathrm{6}{x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{6}{y}^{\mathrm{2}} −\mathrm{9}\right) \\ $$$$\frac{\partial{f}}{\partial{x}}\:=\:\mathrm{2}{x}+\lambda\left(\mathrm{12}{x}+\mathrm{2}{y}\right)=\mathrm{0}…