Question Number 129084 by mnjuly1970 last updated on 12/Jan/21 $$\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{20}}+\frac{\mathrm{1}}{\mathrm{56}}−\frac{\mathrm{1}}{\mathrm{120}}+\frac{\mathrm{1}}{\mathrm{220}}−…\right) \\ $$$$\:\:\:\:\:\:\:\overset{???} {=}\pi\:−\mathrm{3}\:\: \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 129072 by liberty last updated on 12/Jan/21 $$\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{F}\left(\mathrm{0}\right)\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\: \\ $$$$\:\mathrm{F}\left(\mathrm{x}\right)=\:\frac{\left(\mathrm{4}^{{x}} −\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{sin}\:\left(\frac{{x}}{\mathrm{4}}\right)\:\mathrm{ln}\:\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)}\:\mathrm{becomes}\:\mathrm{continous} \\ $$$$\mathrm{at}\:{x}\:=\:\mathrm{0}? \\ $$ Answered by MJS_new last updated on…
Question Number 129041 by oustmuchiya@gmail.com last updated on 12/Jan/21 $${Differentiate}\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{3}} \left(\mathrm{6}\boldsymbol{{x}}^{\mathrm{2}} \right) \\ $$ Answered by bramlexs22 last updated on 12/Jan/21 $$\:\mathrm{f}\:'\left(\mathrm{x}\right)=\mathrm{12x}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{3}} +\mathrm{6x}\left(\mathrm{x}^{\mathrm{2}}…
Question Number 129039 by oustmuchiya@gmail.com last updated on 12/Jan/21 $${partially}\:{Differentiate}\:{function} \\ $$$$\boldsymbol{{f}}\left(\boldsymbol{{x}},\boldsymbol{{y}}\right)=\mathrm{2}\boldsymbol{{x}}^{−\mathrm{2}} \boldsymbol{{y}}+\boldsymbol{{xy}}^{\mathrm{3}} +\frac{\mathrm{2}}{\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}} \\ $$ Answered by liberty last updated on 12/Jan/21 $$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{2x}^{−\mathrm{2}}…
Question Number 129034 by oustmuchiya@gmail.com last updated on 12/Jan/21 $${Differentiate}\:\boldsymbol{{siny}}\:−\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{3}} −\boldsymbol{{cosx}}=\mathrm{3}\boldsymbol{{y}} \\ $$ Answered by MJS_new last updated on 12/Jan/21 $$\left(\mathrm{cos}\:{y}\:−\mathrm{3}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right){dy}+\left(−\mathrm{2}{xy}^{\mathrm{3}} +\mathrm{sin}\:{x}\right){dx}=\mathrm{3}{dy}…
Question Number 129026 by oustmuchiya@gmail.com last updated on 12/Jan/21 $${differentiate}\:{y}=\frac{\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} \sqrt{\mathrm{6}{x}+\mathrm{2}}}{{x}^{\mathrm{3}} +\mathrm{1}} \\ $$ Answered by MJS_new last updated on 12/Jan/21 $${y}=\frac{{uv}}{{w}} \\ $$$${y}'=\frac{\left({uv}\right)'{w}−{w}'{uv}}{{w}^{\mathrm{2}}…
Question Number 129028 by oustmuchiya@gmail.com last updated on 12/Jan/21 $${Find}\:{gradient}\:{of}\:{the}\:{curve}\:{y}=\frac{\mathrm{1}}{{x}−\mathrm{1}} \\ $$ Commented by liberty last updated on 12/Jan/21 $$\mathrm{m}\:=\:−\frac{\mathrm{1}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Terms of…
Question Number 63473 by Rio Michael last updated on 04/Jul/19 $${question} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sin}\left({x}+{A}\right)−{sin}\left({A}−{x}\right)}{\mathrm{2}{x}} \\ $$ Commented by mathmax by abdo last updated on 04/Jul/19…
Question Number 63378 by minh2001 last updated on 03/Jul/19 $$\underset{\mathrm{2}} {\overset{{x}} {\int}}\frac{\mathrm{1}}{{x}}{dx}=\mathrm{2}{ln}\left(\mathrm{3}\right)−{ln}\left(\mathrm{2}\right) \\ $$$${please}\:{help}\:{me}\:{to}\:{solve}\:{for}\:{x} \\ $$ Answered by MJS last updated on 03/Jul/19 $$\mathrm{the}\:\mathrm{borders}\:\mathrm{must}\:\mathrm{be}\:\mathrm{independent}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{variable} \\…
Question Number 63301 by Rio Michael last updated on 02/Jul/19 $${find}\:\frac{{dy}}{{dx}}\:{if}\:\:{x}\left({x}\:+{y}\right)\:=\:{y}^{\mathrm{2}} \\ $$ Commented by kaivan.ahmadi last updated on 02/Jul/19 $${f}\left({x},{y}\right)={x}^{\mathrm{2}} +{xy}−{y}^{\mathrm{2}} =\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}=−\frac{{f}'_{{x}}…