Menu Close

Category: Differentiation

find-value-of-tan46-0-using-calculus-

Question Number 118004 by TANMAY PANACEA last updated on 14/Oct/20 $${find}\:\:{value}\:{of}\:{tan}\mathrm{46}^{\mathrm{0}} \:{using}\:{calculus} \\ $$ Answered by mr W last updated on 14/Oct/20 $$\mathrm{46}°=\mathrm{45}°+\mathrm{1}°=\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{180}} \\ $$$$\mathrm{tan}\:\mathrm{46}°=\frac{\mathrm{1}+\mathrm{tan}\:\frac{\pi}{\mathrm{180}}}{\mathrm{1}−\mathrm{tan}\:\frac{\pi}{\mathrm{180}}}…

nice-integral-please-prove-0-pi-2-ln-2-cot-x-dx-pi-3-8-m-n-1070-

Question Number 117953 by mnjuly1970 last updated on 14/Oct/20 $$\:\:\:\:\:\:\:\:\:…\:\:\blacktriangleleft{nice}\:\:{integral}\blacktriangleright… \\ $$$$\:\:\:\:{please}\:\:{prove}\:: \\ $$$$ \\ $$$$\:\:\Omega=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}^{\mathrm{2}} \left({cot}\left({x}\right)\right){dx}\:=\frac{\pi^{\mathrm{3}} }{\mathrm{8}}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:…\spadesuit{m}.{n}.\mathrm{1070}\spadesuit… \\ $$ Answered…

Given-a-function-R-R-with-2-x-2-Find-the-value-of-d-2-dx-2-when-8-

Question Number 117704 by bemath last updated on 13/Oct/20 $$\mathrm{Given}\:\mathrm{a}\:\mathrm{function}\:\psi:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\mathrm{with}\:\psi\left(\theta\right)\:=\:\theta^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} .\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\frac{\mathrm{d}^{\mathrm{2}} \psi\left(\theta\right)}{\mathrm{dx}^{\mathrm{2}} }\:\:\mathrm{when}\:\theta=\mathrm{8} \\ $$ Commented by prakash jain last…

The-curve-y-ax-b-2x-1-has-the-stationary-point-at-2-7-Find-the-value-of-a-and-b-

Question Number 52124 by 786786AM last updated on 03/Jan/19 $$\mathrm{The}\:\mathrm{curve}\:\mathrm{y}\:=\:\mathrm{ax}\:+\:\frac{\mathrm{b}}{\mathrm{2x}−\:\mathrm{1}}\:\mathrm{has}\:\mathrm{the}\:\mathrm{stationary}\:\mathrm{point}\:\mathrm{at}\:\:\left(\mathrm{2},\:\mathrm{7}\right)\:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:. \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jan/19 $$\mathrm{2}{xy}−{y}=\mathrm{2}{ax}^{\mathrm{2}} −{ax}+{b} \\ $$$${partial}\:{derivative}\:{w}.{r}.{t}\:{x} \\ $$$$\mathrm{2}{y}−\mathrm{0}=\mathrm{4}{ax}−{a}…