Question Number 52006 by peter frank last updated on 01/Jan/19 $${Differentiate}\:\mathrm{sin}^{−\mathrm{1}} \left[\frac{\mathrm{ln}\:{x}}{\mathrm{cos}\:{x}}\right] \\ $$$${with}\:{respect}\:{to}\:\mathrm{tan}\:{x}^{\mathrm{2}} \\ $$ Commented by MJS last updated on 02/Jan/19 $$\mathrm{I}\:\mathrm{get}\:\left(\mathrm{with}\:\mathrm{no}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{anything}\right) \\…
Question Number 117486 by Canovas last updated on 12/Oct/20 Answered by john santu last updated on 12/Oct/20 $$\frac{{dy}}{{dx}}\:=\:\mathrm{2}{x}.\left(\mathrm{2}^{{y}} \right)+{x}^{\mathrm{2}} .\mathrm{ln}\:\left(\mathrm{2}\right).\mathrm{2}^{{y}} \:\frac{{dy}}{{dx}} \\ $$$$\left(\mathrm{1}−\mathrm{ln}\:\left(\mathrm{2}\right){x}^{\mathrm{2}} .\mathrm{2}^{{y}} \right)\frac{{dy}}{{dx}}\:=\:\mathrm{2}{x}.\mathrm{2}^{{y}}…
Question Number 117482 by Don08q last updated on 12/Oct/20 $$\:\mathrm{If}\:\:\mathrm{cosec}^{−\mathrm{1}} {x}\:\:=\:\:\mathrm{cot}^{−\mathrm{1}} {y},\:\mathrm{show}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:\:+\:\:\frac{\mathrm{1}}{{y}^{\mathrm{3}} }\:\:=\:\:\mathrm{0} \\ $$ Answered by TANMAY PANACEA last updated…
Question Number 117470 by TANMAY PANACEA last updated on 11/Oct/20 $$\frac{{d}}{{dx}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:{atx}=\mathrm{1} \\ $$ Commented by TANMAY PANACEA last updated on 12/Oct/20 $${thank}\:{you}\:{sir} \\…
Question Number 182996 by ibe222 last updated on 18/Dec/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 117344 by bemath last updated on 11/Oct/20 Commented by bemath last updated on 11/Oct/20 $$\mathrm{yes}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{think}\:\mathrm{this}\:\mathrm{question} \\ $$$$\mathrm{wrong} \\ $$ Commented by bemath last…
Question Number 117341 by bemath last updated on 11/Oct/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 117280 by mnjuly1970 last updated on 10/Oct/20 $$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{calculus}…\: \\ $$$$ \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right).{cos}^{\mathrm{2}} \left(\pi{x}\right){dx} \\ $$$$…
Question Number 117223 by mnjuly1970 last updated on 10/Oct/20 $$\:\:\:\:\:\:\:\:\:…\:{nice}\:\:{mathematics}… \\ $$$$\:\:{proof}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega\:=\:\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}\:} ^{\:\infty} \left[{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)\right]^{\mathrm{2}} {dx}={ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:…\:\:{m}.{n}.\mathrm{1970}… \\ $$ Answered by mathmax…
Question Number 117216 by bobhans last updated on 10/Oct/20 $$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{dx}}{\:\sqrt{\mathrm{sin}\:\mathrm{x}}}\:=?\: \\ $$$$ \\ $$ Answered by TANMAY PANACEA last updated on 10/Oct/20 $$\mathrm{2}\int_{\mathrm{0}}…