Question Number 211502 by MathematicalUser2357 last updated on 11/Sep/24 $$\mathrm{If}\:\begin{cases}{{f}\left({x}\right)={x}^{\mathrm{2}} }\\{{g}\left({x}\right)=\mathrm{sin}\:{x}}\end{cases}, \\ $$$$\mathrm{Then}\:\mathrm{find}\:\frac{{df}}{{dg}}. \\ $$ Answered by a.lgnaoui last updated on 11/Sep/24 $$\frac{\mathrm{df}}{\mathrm{dg}}=\frac{\mathrm{df}}{\mathrm{dx}}×\frac{\mathrm{dx}}{\mathrm{dg}}.=\:\:\frac{\mathrm{f}^{'} }{\mathrm{g}'} \\…
Question Number 211321 by efronzo1 last updated on 06/Sep/24 $$\:\:\:\:\underbrace{\:} \\ $$ Answered by som(math1967) last updated on 06/Sep/24 $$\:\frac{\mathrm{1}+{sin}\theta}{{cos}\theta}={p} \\ $$$$\Rightarrow\frac{\left(\mathrm{1}+{sin}\theta\right)^{\mathrm{2}} }{{cos}^{\mathrm{2}} \theta}={p}^{\mathrm{2}} \\…
Question Number 211365 by JuniorKepler last updated on 06/Sep/24 Answered by mr W last updated on 07/Sep/24 $$\frac{\left({x}+{y}\right)^{{p}} \left({x}+{y}\right)^{{q}} }{{x}^{{p}} {y}^{{q}} }=\mathrm{1} \\ $$$$\left(\mathrm{1}+\frac{{y}}{{x}}\right)^{{p}} \left(\mathrm{1}+\frac{{x}}{{y}}\right)^{{q}}…
Question Number 210807 by mnjuly1970 last updated on 19/Aug/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 210702 by depressiveshrek last updated on 17/Aug/24 $$\mathrm{How}\:\mathrm{many}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{does}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{x}=\mathrm{sin3}{x}\:\mathrm{have}? \\ $$ Answered by Frix last updated on 17/Aug/24 $${x}=\mathrm{sin}\:\mathrm{3}{x} \\ $$$${t}=\mathrm{3}{x} \\…
Question Number 210248 by universe last updated on 04/Aug/24 Answered by mr W last updated on 04/Aug/24 $$\mathrm{f}''\left(\mathrm{x}\right)>\mathrm{0}\:\Rightarrow\mathrm{f}'\left(\mathrm{x}\right)\:{is}\:{strictly}\:{increasing}. \\ $$$${case}\:\mathrm{1}:\:\mathrm{f}'\left({x}\right)<\mathrm{0} \\ $$$$\Rightarrow{f}\left({x}\right)\:{is}\:{decreasing} \\ $$$${x}+{f}'\left({x}\right)<{x}\:\Rightarrow{f}\left({x}+{f}'\left({x}\right)\right)>{f}\left({x}\right) \\…
Question Number 209924 by OmoloyeMichael last updated on 26/Jul/24 $$\boldsymbol{{If}}\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\left(\boldsymbol{{x}}!\right)\centerdot\left(\boldsymbol{{x}}!!\right)\centerdot\left(\boldsymbol{{x}}!!!\right)\:\: \\ $$$$\boldsymbol{{find}}\:\:\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\left(\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\right)=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 209624 by mnjuly1970 last updated on 16/Jul/24 $$ \\ $$$$ \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\frac{\:\mathrm{1}}{\mathrm{1}+\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{x}^{\mathrm{2}} {y}^{\mathrm{2}} }\:{dxdy}=? \\ $$$$\:{using}\:\:\:\:{polar}\:\:{system}… \\…
Question Number 209308 by Erico last updated on 06/Jul/24 $$\mathrm{Donner}\:\mathrm{l}'\acute {\mathrm{e}quivalence}\:\mathrm{simple} \\ $$$$\mathrm{de}\:\mathrm{I}_{\mathrm{n}} =\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{{t}^{{n}} }{{t}^{{n}} −{t}+\mathrm{1}}{dt} \\ $$ Answered by mathzup last updated…
Question Number 209228 by universe last updated on 04/Jul/24 Answered by Frix last updated on 04/Jul/24 $$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\left(\mathrm{cos}\:{x}\:+\mathrm{sin}\:{x}\right)^{{n}} {dx}=\sqrt{\mathrm{2}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{sin}^{{n}} \:\left({x}+\frac{\pi}{\mathrm{4}}\right)\:{dx}= \\ $$$$=\sqrt{\mathrm{2}}\underset{\frac{\pi}{\mathrm{4}}}…