Menu Close

Category: Differentiation

Consider-a-square-based-pyramid-with-a-height-of-6x-cm-and-a-base-length-of-2-x-cm-Find-maximum-value-of-volume-of-pyramid-

Question Number 101182 by bemath last updated on 01/Jul/20 $$\mathcal{C}\mathrm{onsider}\:\mathrm{a}\:\mathrm{square}\:−\:\mathrm{based} \\ $$$$\mathrm{pyramid}\:\mathrm{with}\:\mathrm{a}\:\mathrm{height}\:\mathrm{of}\:\mathrm{6}{x}\:\mathrm{cm} \\ $$$$\mathrm{and}\:\mathrm{a}\:\mathrm{base}\:\mathrm{length}\:\mathrm{of}\:\left(\mathrm{2}−{x}\right)\mathrm{cm}. \\ $$$$\mathrm{Find}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{volume}\:\mathrm{of}\:\mathrm{pyramid}. \\ $$ Answered by bemath last updated…

Calculate-If-0-1-tanh-1-x-3-x-dx-2-then-M-N-

Question Number 166690 by mnjuly1970 last updated on 25/Feb/22 $$ \\ $$$$\:\:\:\:\:\:\:\:\:{Calculate}\: \\ $$$$\:\:\:\:\:{If}\:\:,\:\boldsymbol{\phi}=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tanh}^{\:−\mathrm{1}} \left(\:{x}^{\:\mathrm{3}} \:\right)}{{x}}\:{dx}\:=\:\alpha.\zeta\left(\:\mathrm{2}\right)\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{then}\:,\:\:\:\:\:\alpha\:=\:?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:\mathscr{M}.\mathscr{N}\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−− \\ $$$$ \\…

Question-35537

Question Number 35537 by Raj Singh last updated on 20/May/18 Answered by tanmay.chaudhury50@gmail.com last updated on 20/May/18 $${f}\left({x}\right)={y}={x}^{\mathrm{2}} \:\: \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1}^{\mathrm{2}} =\mathrm{1}\:\:\:\:{and}\:{f}\left(\mathrm{2}\right)=\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$$${slope}\:{m}=\frac{{f}\left(\mathrm{2}\right)−{f}\left(\mathrm{1}\right)}{\mathrm{2}−\mathrm{1}}=\mathrm{3}…

Question-35461

Question Number 35461 by Raj Singh last updated on 19/May/18 Answered by tanmay.chaudhury50@gmail.com last updated on 19/May/18 $${x}.\frac{\mathrm{1}}{\mathrm{2}}×\left(\mathrm{1}+{y}\right)^{−\mathrm{1}/\mathrm{2}} ×\frac{{dy}}{{dx}}+{y}×\frac{\mathrm{1}}{\mathrm{2}}×\left(\mathrm{1}+{x}\right)^{−\mathrm{1}/\mathrm{2}} \\ $$$$ \\ $$ Terms of…