Question Number 93477 by Ar Brandon last updated on 13/May/20 $$\mathrm{Differentiate}\:\mathrm{completely}; \\ $$$$\mathrm{1}\backslash\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{2}} +\mathrm{xy}^{\mathrm{2}} +\mathrm{siny} \\ $$$$\mathrm{2}\backslash\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{e}^{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} } \\ $$$$\mathrm{3}\backslash\:\mathrm{f}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=\mathrm{tan}\left(\mathrm{3x}−\mathrm{y}\right)+\mathrm{6}^{\mathrm{y}+\mathrm{2}} \\ $$ Answered by…
Question Number 93451 by mhmd last updated on 13/May/20 $${Solve}\:{by}\:{using}\:{change}\:{the}\:{conistant}\:{megbod}\: \\ $$$$\mathrm{4}{y}^{''} +{y}=\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}\sqrt{{x}}}? \\ $$ Commented by i jagooll last updated on 13/May/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{conistant}\:\mathrm{megbod}?…
Question Number 27830 by çhëý böý last updated on 15/Jan/18 $$\underset{{x}\rightarrow\propto} {\mathrm{lim}}\:\left({x}−\mathrm{ln}{x}\right) \\ $$ Commented by abdo imad last updated on 15/Jan/18 $${lim}_{{x}−>\propto} {x}−{lnx}\:={lim}_{{x}−>\propto\:} {x}\left(\:\mathrm{1}−\frac{{ln}\left({x}\right)}{{x}}\right)={lim}_{{x}−>\propto}…
Question Number 27801 by abdo imad last updated on 14/Jan/18 $${solve}\:{the}\:{d}.{e}.\:\:{y}^{'} \:−\mathrm{2}{xy}\:={sinx}\:{e}^{{x}^{\mathrm{2}} } \:{with}\:{initial}\:{condition} \\ $$$${y}\left({o}\right)=\mathrm{1}. \\ $$ Commented by abdo imad last updated on…
Question Number 27782 by abdo imad last updated on 14/Jan/18 $${solve}\:{the}\:{e}.{d}.\:\:\:\:\:{xy}^{'} \:+\alpha{y}\:\:=\:{xe}^{−{x}} \:\:. \\ $$ Commented by abdo imad last updated on 18/Jan/18 $${if}\:\alpha=\mathrm{0}\:\:\:\:{e}\:\:\Leftrightarrow\:\:{xy}^{'} =\:{x}\:{e}^{−{x}}…
Question Number 158803 by ajfour last updated on 09/Nov/21 Commented by ajfour last updated on 09/Nov/21 $$\:\:\:\:\:\:\:\:\:\:\:\:{Q}.\mathrm{158749}\:\:{again} \\ $$ Answered by ajfour last updated on…
Question Number 27624 by gopikrishnan005@gmail.com last updated on 11/Jan/18 $$\left({D}^{\mathrm{2}} +\mathrm{2}{D}+\mathrm{1}\right){y}={x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1} \\ $$ Commented by prakash jain last updated on 12/Jan/18 $${D}=\frac{{d}}{{dx}}? \\ $$…
Question Number 158691 by mnjuly1970 last updated on 07/Nov/21 $$ \\ $$$$\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(−\mathrm{1}\right)^{\:{n}} \:\mathcal{H}_{\:\mathrm{2}{n}} }{\mathrm{2}{n}}\:=? \\ $$ Answered by qaz last updated on 08/Nov/21…
Question Number 27598 by abdo imad last updated on 10/Jan/18 $${find}\:\int\int\int_{{D}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdxy}\:\:\:{with} \\ $$$$\left.{D}=\left\{{x},{y},{z}\right)\in{R}^{\mathrm{3}} \:\:\:/{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:\leqslant\mathrm{1}\:\:{and}\:{z}\geqslant\mathrm{0}\:\right\} \\ $$ Commented by abdo…
Question Number 27594 by abdo imad last updated on 10/Jan/18 $${solve}\:{the}\:\:{differencial}\:{equation} \\ $$$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right){y}^{'} \:−{xy}\:=\mathrm{1}\:\:\:. \\ $$ Commented by abdo imad last updated on 12/Jan/18…