Menu Close

Category: Geometry

Question-227357

Question Number 227357 by mr W last updated on 18/Jan/26 Answered by A5T last updated on 18/Jan/26 $$\mathrm{Let}\:\parallel\:\mathrm{be}\:\mathrm{x}\:,\:\mathrm{tangent}\:\mathrm{be}\:\mathrm{t}\:\mathrm{and}\:\mathrm{radius}\:\mathrm{be}\:\mathrm{r}. \\ $$$$\mathrm{x}\left(\mathrm{2x}\right)=\mathrm{t}^{\mathrm{2}} \Rightarrow\mathrm{t}=\mathrm{x}\sqrt{\mathrm{2}} \\ $$$$\sqrt{\left(\mathrm{2r}\right)^{\mathrm{2}} −\mathrm{r}^{\mathrm{2}} }=\mathrm{t}−\mathrm{r}\Rightarrow\mathrm{t}=\mathrm{r}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)…

Question-226850

Question Number 226850 by cherokeesay last updated on 17/Dec/25 Answered by TonyCWX last updated on 17/Dec/25 $${y}\:=\:{x}\left({x}−\mathrm{1}\right)\:\Rightarrow\:{x}\:=\:\mathrm{0}\:\mathrm{or}\:{x}\:=\:\mathrm{1} \\ $$$$\mathrm{A}>\mathrm{0},\:\mathrm{A}=\mathrm{1} \\ $$$$ \\ $$$${x}\left({x}−\mathrm{1}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}{x} \\ $$$${x}^{\mathrm{2}}…