Menu Close

Category: Geometry

Question-188208

Question Number 188208 by Rupesh123 last updated on 26/Feb/23 Answered by a.lgnaoui last updated on 26/Feb/23 $$\measuredangle{ADB}=\mathrm{150}\:\:\Rightarrow\measuredangle{BCD}=\mathrm{30}\:\:\measuredangle{C}=\mathrm{120} \\ $$$$\bigtriangleup{ABC}\:\:\:\frac{\mathrm{sin}\:\mathrm{20}}{\mathrm{8}}=\frac{\mathrm{sin}\:\mathrm{60}}{{x}+{CD}}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{CD}=\frac{\mathrm{8sin}\:\mathrm{60}}{\mathrm{sin}\:\mathrm{20}}−{x}\:\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\bigtriangleup{BCD}\:\:\:\:\frac{\mathrm{sin}\:\mathrm{50}}{{CD}}=\frac{\mathrm{sin}\:\mathrm{30}}{\mathrm{8}}\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{CD}=\frac{\:\mathrm{8sin}\:\mathrm{50}}{\mathrm{sin}\:\mathrm{30}}\:\:\:\:\:\left(\mathrm{4}\right)\:\:\:\:\:\:\:…

Question-188147

Question Number 188147 by normans last updated on 26/Feb/23 Answered by Rasheed.Sindhi last updated on 26/Feb/23 $$\mathrm{5}\:\mid\:{ABC}\:\Rightarrow{C}=\mathrm{0}\:{or}\:\mathrm{5} \\ $$$${C}=\mathrm{0}\Rightarrow{D}=\mathrm{0},\mathrm{4},\mathrm{8}\:\:\left[\because\:\mathrm{4}\mid{ABCD}\right] \\ $$$${C}=\mathrm{5}\Rightarrow{D}=\mathrm{2},\mathrm{6}\:\:\:\:\:\:\left[\because\:\mathrm{4}\mid{ABCD}\right] \\ $$$${CD}=\mathrm{00},\mathrm{04},\mathrm{08},\mathrm{52},\mathrm{56} \\ $$$${BCD}=\mathrm{000},\mathrm{900},\mathrm{504},\mathrm{108},\mathrm{252},\mathrm{756}\:\:\left[\because\mathrm{9}\mid{BCD}\right]…