Question Number 56037 by ajfour last updated on 08/Mar/19 Commented by ajfour last updated on 08/Mar/19 $${Find}\:{maximum}\:{area}\:{of}\:{inner} \\ $$$${triangle}\:{if}\:{outer}\:{one}\:{is}\:{equilateral}. \\ $$ Commented by mr W…
Question Number 187100 by Tons last updated on 13/Feb/23 Answered by a.lgnaoui last updated on 14/Feb/23 $$\bigtriangleup{APB}\:\:\:\:{AB}\mathrm{sin}\:{X}={AC}\mathrm{cos}\:{Y}\:\: \\ $$$$ \\ $$$$\:{BC}=\mathrm{2}{AB}\mathrm{cos}\:{Y}\:\:\Rightarrow\begin{cases}{{Y}=\frac{\pi}{\mathrm{2}}−{X}}\\{{AB}={AC}}\end{cases} \\ $$$$\mathrm{sin}\:{X}=\mathrm{cos}\:{Y}\:\:\: \\ $$$$\bigtriangleup{ABCD}\:\:\:\:{Sqart}\left({Care}\right)…
Question Number 121553 by I want to learn more last updated on 09/Nov/20 Commented by I want to learn more last updated on 09/Nov/20 $$\mathrm{Area}\:\mathrm{of}\:\mathrm{shaded}…
Question Number 187086 by Rupesh123 last updated on 13/Feb/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 121539 by ajfour last updated on 09/Nov/20 Commented by ajfour last updated on 09/Nov/20 $$\:\:\:\:\:\:\:\:{Find}\:\frac{{s}}{{R}}\:\:{for}\:{maximum}\:{blue} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{triangular}\:{area}. \\ $$$$\left({square}\:{remains}\:{within}\:{semicircle}\right) \\ $$ Answered by…
Question Number 187066 by mr W last updated on 13/Feb/23 Commented by mr W last updated on 13/Feb/23 $${find}\:{the}\:{area}\:{of}\:{the}\:{regular}\:{hexagon}. \\ $$ Answered by mr W…
Question Number 186998 by Mingma last updated on 12/Feb/23 Commented by a.lgnaoui last updated on 12/Feb/23 Answered by a.lgnaoui last updated on 12/Feb/23 $$\bigtriangleup{ABC}\: \\…
Question Number 186989 by manlikeAkin last updated on 12/Feb/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 186976 by mr W last updated on 12/Feb/23 Commented by mr W last updated on 12/Feb/23 $${the}\:{distances}\:{from}\:{a}\:{point}\:{to}\:{three} \\ $$$${vertexes}\:{of}\:{a}\:{regular}\:{hexagon}\:{are} \\ $$$${given}.\:{find}\:{the}\:{distances}\:{from}\:{this} \\ $$$${point}\:{to}\:{the}\:{other}\:{three}\:{vertexes}.…
Question Number 55820 by ajfour last updated on 04/Mar/19 Commented by ajfour last updated on 04/Mar/19 $${Help}\:{determining}\:{radius}\:{of}\:{circle}! \\ $$ Commented by mr W last updated…