Menu Close

Category: Geometry

Question-220307

Question Number 220307 by Tawa11 last updated on 10/May/25 Answered by fantastic last updated on 10/May/25 Commented by fantastic last updated on 10/May/25 $${Here}\:\Box{ABCD}\:={DC}×{AN}\:.{As}\:{the}\:{opposite}\:{sides}\:{of}\:{a}\:{parallelogram}\:{is}\:{equal}\:{so}\:{AB}={DC} \\…

Question-220264

Question Number 220264 by Tawa11 last updated on 10/May/25 Answered by SdC355 last updated on 10/May/25 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{2}{h}+\mathrm{9}\right)\left(\mathrm{2}{h}+\mathrm{11}\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}{h}+\mathrm{9}}−\frac{\mathrm{1}}{\mathrm{2}{h}+\mathrm{11}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{11}}−\frac{\mathrm{1}}{\mathrm{13}}+\frac{\mathrm{1}}{\mathrm{13}}−\frac{\mathrm{1}}{\mathrm{15}}+….\right)…