Menu Close

Category: Geometry

Question-176437

Question Number 176437 by cherokeesay last updated on 19/Sep/22 Answered by HeferH last updated on 19/Sep/22 $$\:{by}\:{similar}\:{triangles}: \\ $$$$\:{b}\:={AD}\:=\:\frac{\mathrm{8}\sqrt{\mathrm{5}}}{\mathrm{2}\:+\:\mathrm{2}\sqrt{\mathrm{5}}}\:\:=\:\frac{\left(\mathrm{4}\sqrt{\mathrm{5}}\right)}{\left(\mathrm{1}\:+\:\sqrt{\mathrm{5}}\right)} \\ $$$$\:{h}\:=\:\mathrm{4} \\ $$$$\:{A}_{\bigtriangleup{ABD}} \:=\:\frac{{bh}}{\mathrm{2}}\:=\:\frac{\mathrm{8}\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{5}}\:+\:\mathrm{1}}\:=\:\mathrm{10}\:−\:\mathrm{2}\sqrt{\mathrm{5}\:} \\…

Between-a-square-a-triangle-and-a-circle-of-the-same-perimeter-which-shape-has-the-least-area-

Question Number 110781 by Aina Samuel Temidayo last updated on 30/Aug/20 $$\mathrm{Between}\:\mathrm{a}\:\mathrm{square},\mathrm{a}\:\mathrm{triangle}\:\mathrm{and}\:\mathrm{a} \\ $$$$\mathrm{circle}\:\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{perimeter},\:\mathrm{which} \\ $$$$\mathrm{shape}\:\mathrm{has}\:\mathrm{the}\:\mathrm{least}\:\mathrm{area}? \\ $$ Commented by mr W last updated on…

Question-45187

Question Number 45187 by MrW3 last updated on 10/Oct/18 Commented by MrW3 last updated on 12/Oct/18 $${Solution}\:{to}\:{Q}\mathrm{45122}. \\ $$$${Find}\:{the}\:{length}\:{of}\:{path}\:{from}\:{A}\:{to}\:{B} \\ $$$${which}\:{has}\:{a}\:{constant}\:{slope}. \\ $$$$ \\ $$$${A}\:{point}\:{P}\:{on}\:{the}\:{path}\:{can}\:{be}\:{described}…

Suppose-ABCD-is-a-rectangle-X-and-Y-are-points-on-BC-and-CD-respectively-such-that-the-area-of-ABX-CXY-and-AYD-are-3-cm-2-4-cm-2-and-5-cm-2-respectively-Find-the-area-of-AXY-

Question Number 176192 by adhigenz last updated on 14/Sep/22 $$\mathrm{Suppose}\:\mathrm{ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{rectangle}.\:\mathrm{X}\:\mathrm{and}\:\mathrm{Y}\:\mathrm{are}\:\mathrm{points}\:\mathrm{on}\:\mathrm{BC}\:\mathrm{and}\:\mathrm{CD}\:\mathrm{respectively}, \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{ABX},\:\mathrm{CXY},\:\mathrm{and}\:\mathrm{AYD}\:\mathrm{are}\:\mathrm{3}\:\mathrm{cm}^{\mathrm{2}} ,\:\mathrm{4}\:\mathrm{cm}^{\mathrm{2}} ,\:\mathrm{and}\:\mathrm{5}\:\mathrm{cm}^{\mathrm{2}} \:\mathrm{respectively}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{AXY}. \\ $$ Answered by som(math1967) last updated on…

Question-176195

Question Number 176195 by adhigenz last updated on 14/Sep/22 Answered by behi834171 last updated on 15/Sep/22 $${BC}={BP}={PC}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}},{AB}={AR}={BR}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${PQ}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{1}−\mathrm{2}×\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}×\mathrm{1}×{cos}\left(\mathrm{150}\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{1}+\mathrm{2}×\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\Rightarrow{PQ}=\sqrt{\frac{\mathrm{7}}{\mathrm{3}}} \\ $$$${cos}\measuredangle{CPQ}=\frac{\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\right)^{\mathrm{2}} +\left(\sqrt{\frac{\mathrm{7}}{\mathrm{3}}}\right)^{\mathrm{2}}…