Menu Close

Category: Geometry

a-The-area-of-a-sector-of-a-circle-of-radius-12cm-is-132cm-2-If-the-sector-is-folded-such-that-its-straight-edges-coincide-to-form-a-cone-Find-the-radius-of-the-base-of-the-cone-Take-

Question Number 44548 by Tawa1 last updated on 01/Oct/18 $$\left(\mathrm{a}\right) \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sector}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\:\mathrm{12cm}\:\mathrm{is}\:\:\mathrm{132cm}^{\mathrm{2}} \:.\:\:\mathrm{If}\:\mathrm{the}\:\mathrm{sector} \\ $$$$\mathrm{is}\:\mathrm{folded}\:\mathrm{such}\:\mathrm{that}\:\mathrm{its}\:\mathrm{straight}\:\mathrm{edges}\:\mathrm{coincide}\:\mathrm{to}\:\mathrm{form}\:\mathrm{a}\:\mathrm{cone}.\:\mathrm{Find}\:\mathrm{the}\: \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{base}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cone}\:\:\:\:\left[\:\:\mathrm{Take}\:\:\:\:\pi\:\:=\:\:\frac{\mathrm{22}}{\mathrm{7}}\:\right]\:. \\ $$$$ \\ $$$$\left(\mathrm{b}\right)\:\:\: \\ $$$$\mathrm{A}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{centre}\:\mathrm{O}\:\mathrm{has}\:\mathrm{radius}\:\mathrm{5cm}.\:\:\mathrm{A}\:\mathrm{chord}\:\mathrm{PQ}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{6cm}\:\mathrm{long}. \\ $$$$\mathrm{caclculate}:…

Question-109948

Question Number 109948 by mnjuly1970 last updated on 26/Aug/20 Answered by 1549442205PVT last updated on 26/Aug/20 $$\mathrm{acosA}=\mathrm{a}.\frac{\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }{\mathrm{2bc}}=\frac{\mathrm{a}^{\mathrm{2}} \left(\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \right)}{\mathrm{2abc}}. \\…

Question-175476

Question Number 175476 by ajfour last updated on 31/Aug/22 Commented by ajfour last updated on 31/Aug/22 $${A}\:{cone}\:{has}\:{an}\:{inscribed}\:{cube}\:{resting} \\ $$$${at}\:{its}\:{base}.\:{Atop}\:{the}\:{cube}\:{inscribed} \\ $$$${in}\:{the}\:{cone}\:{is}\:{a}\:{sphere}\:{of}\:{radius}\:{r}. \\ $$$${Find}\:{r}\:{in}\:{terms}\:{of}\:{R},\:{H}\:\left({cone}'{s}\right. \\ $$$$\left.{radius}\:{and}\:{height}\right).…