Menu Close

Category: Geometry

The-circle-x-2-y-2-2x-4y-20-0-is-inscribed-in-a-square-One-vertex-of-the-square-is-4-7-Find-the-coordinates-of-the-other-vertices-

Question Number 174185 by nadovic last updated on 26/Jul/22 $$\mathrm{The}\:\mathrm{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{4}{y}−\mathrm{20}=\mathrm{0}\:\mathrm{is} \\ $$$$\mathrm{inscribed}\:\mathrm{in}\:\mathrm{a}\:\mathrm{square}.\:\mathrm{One}\:\mathrm{vertex} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\mathrm{is}\:\left(−\mathrm{4},\:\mathrm{7}\right).\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{coordinates}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{vertices}. \\ $$ Answered by Cesar1994 last updated…

Question-108626

Question Number 108626 by I want to learn more last updated on 18/Aug/20 Answered by Aziztisffola last updated on 18/Aug/20 $$\mathrm{A}_{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{circle}} =\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\frac{\mathrm{a}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\pi\mathrm{a}^{\mathrm{2}} }{\mathrm{8}} \\…

The-circles-x-2-y-2-2ax-8y-13-0-and-x-2-y-2-2x-2by-1-0-are-congruent-If-they-are-2-10-units-apart-find-the-possible-values-of-a-and-b-

Question Number 174094 by nadovic last updated on 24/Jul/22 $$\mathrm{The}\:\mathrm{circles}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}+\mathrm{8}{y}+\mathrm{13}=\mathrm{0} \\ $$$$\mathrm{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}{by}+\mathrm{1}=\mathrm{0}\:\mathrm{are}\: \\ $$$$\mathrm{congruent}.\:\mathrm{If}\:\mathrm{they}\:\mathrm{are}\:\mathrm{2}\sqrt{\mathrm{10}}\:\mathrm{units}\: \\ $$$$\mathrm{apart},\:\mathrm{find}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of} \\ $$$${a}\:\mathrm{and}\:{b}. \\ $$ Answered…

Question-42942

Question Number 42942 by Raj Singh last updated on 05/Sep/18 Answered by MJS last updated on 05/Sep/18 $${BC}={a}\:\:{CA}={b}\:\:{AB}={c} \\ $$$$ \\ $$$$\mathrm{1}.\:{a}=\mathrm{6}\:\:\beta=\mathrm{50}°\:\:{b}+{c}=\mathrm{8}\:\Rightarrow\:{c}=\mathrm{8}−{b} \\ $$$$\alpha+\gamma=\mathrm{130}°\:\Rightarrow\:\gamma=\mathrm{130}°−\alpha \\…