Menu Close

Category: Geometry

Question-225892

Question Number 225892 by mnjuly1970 last updated on 15/Nov/25 Answered by A5T last updated on 15/Nov/25 $$\mathrm{Let}\:\mathrm{O}\:\mathrm{be}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{and}\:\mathrm{OX}=\mathrm{d} \\ $$$$\mathrm{Let}\:\mathrm{OB}=\mathrm{r}\Rightarrow\mathrm{XB}=\mathrm{r}−\mathrm{d};\:\mathrm{AX}=\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{e} \\ $$$$\mathrm{AO}=\sqrt{\mathrm{e}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} }\: \\ $$$$\angle\mathrm{BYC}=\mathrm{90}°\:\Rightarrow\:\mathrm{XHYC}\:\mathrm{is}\:\mathrm{cyclic}…

Question-225856

Question Number 225856 by ajfour last updated on 15/Nov/25 Commented by ajfour last updated on 15/Nov/25 $${Parabola}\:{shown}\:{is}\:\:{y}={x}^{\mathrm{2}} . \\ $$$${Find}\:{equations}\:{of}\:{maximum} \\ $$$${radius}\:{yellow}\:{circles},\:{or}\:{find} \\ $$$$\:\:\:\:\:\:\:{r},\:{C}\left({h},{k}\right)\:,\:{C}\:'\left(−{h},{k}\right) \\…