Menu Close

Category: Geometry

There-is-a-moving-point-P-in-a-triangle-ABC-of-which-sides-are-a-b-c-and-a-gt-b-gt-c-find-the-minimum-and-maximum-of-AP-BP-CP-

Question Number 94144 by Tony Lin last updated on 17/May/20 $${There}\:{is}\:{a}\:{moving}\:{point}\:{P}\:{in}\:{a}\:{triangle} \\ $$$$\:{ABC}\:{of}\:{which}\:{sides}\:{are}\:{a},{b},{c}\:{and}\:{a}>{b}>{c} \\ $$$${find}\:{the}\:{minimum}\:{and}\:{maximum} \\ $$$${of}\:{AP}+{BP}+{CP} \\ $$ Commented by Tony Lin last updated…

Question-28597

Question Number 28597 by beh.i83417@gmail.com last updated on 27/Jan/18 Commented by beh.i83417@gmail.com last updated on 27/Jan/18 $$\boldsymbol{{also}}\:\boldsymbol{{largest}}\:\boldsymbol{{square}}\:,\boldsymbol{{inscribed}}\:\boldsymbol{{in}} \\ $$$$\boldsymbol{{equilateral}}\:\boldsymbol{{triangle}}\:\boldsymbol{{of}}\:\boldsymbol{{side}}=\mathrm{1}\:\:\boldsymbol{{unit}}. \\ $$ Answered by mrW2 last…

Question-28518

Question Number 28518 by beh.i83417@gmail.com last updated on 26/Jan/18 Commented by beh.i83417@gmail.com last updated on 26/Jan/18 $$\boldsymbol{{all}}\:\boldsymbol{{radii}}=\mathrm{1},\:\boldsymbol{{ab}}=? \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{radius}}\:\boldsymbol{{of}}\:\boldsymbol{{a}}\:\boldsymbol{{circle}}\left({or}\:{circles}\right)\:\boldsymbol{{that}} \\ $$$$\boldsymbol{{tangents}}\:\boldsymbol{{to}}\:\boldsymbol{{this}}\:\mathrm{3}\:\boldsymbol{{circles}}. \\ $$ Commented by…

Question-28464

Question Number 28464 by ajfour last updated on 26/Jan/18 Answered by mrW2 last updated on 26/Jan/18 $${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\mathrm{2}{x}}{{a}^{\mathrm{2}}…