Question Number 92807 by Crabby89p13 last updated on 09/May/20 Commented by i jagooll last updated on 09/May/20 $$\mathrm{28}\:\mathrm{cm}^{\mathrm{2}} \\ $$ Answered by M±th+et+s last updated…
Question Number 158335 by mr W last updated on 02/Nov/21 $${if}\:\alpha,\beta,\gamma\:{are}\:{the}\:{angles}\:{of}\:{a}\:{triangle}, \\ $$$${find}\: \\ $$$$\frac{\mathrm{1}}{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\alpha}\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{\beta}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\beta}\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{\gamma}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\gamma}\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{\alpha}}=? \\ $$ Answered by puissant last updated on 03/Nov/21 $$\:\:\:\:\:\:\:\:\:\:\:\alpha\:+\:\beta\:+\:\gamma\:=\:\pi\:\rightarrow\:\alpha\:+\:\beta\:=\:\pi−\gamma\:;…
Question Number 92743 by romariocg11 last updated on 09/May/20 $$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}\:\:−\:\:{y}_{\mathrm{1}} \:\:=\:\:{m}\:\left(\:{x}\:−\:{x}_{\mathrm{1}} \:\right) \\ $$$$\:\:\:\Rightarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}\:−\:\mathrm{1}\:=\:\:\mathrm{5}\:\left(\:{x}\:−\:\mathrm{2}\:\right)\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}\:−\:\mathrm{1}\:=\:\:\mathrm{5}{x}\:−\:\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}\:=\:\:\mathrm{5}{x}\:−\:\mathrm{10}\:+\:\mathrm{1} \\…
Question Number 158237 by mr W last updated on 05/Jan/23 Commented by mr W last updated on 01/Nov/21 $${volume}\:{obtained}\:{after}\:{a}\:{complete}\: \\ $$$${rotation}\:{of}\:{an}\:{area}\:{about}\:{an}\:{axis}. \\ $$$${S}={center}\:{of}\:{area}\:{A} \\ $$$${V}_{{x}}…
Question Number 92684 by I want to learn more last updated on 08/May/20 Commented by I want to learn more last updated on 08/May/20 $$\mathrm{Diagonal}\:\:=\:\:\mathrm{10}\sqrt{\mathrm{5}}…
Question Number 27055 by Joel578 last updated on 01/Jan/18 Commented by Joel578 last updated on 01/Jan/18 $${EB}\:=\:\mathrm{4} \\ $$$${ED}\:=\:\mathrm{8} \\ $$$${EC}\:=\:\mathrm{7} \\ $$$$\mathrm{Find}\:{EA} \\ $$…
Question Number 158079 by ajfour last updated on 30/Oct/21 Commented by ajfour last updated on 31/Oct/21 $${Sir},\:{the}\:{question}\:{should}\:{state}: \\ $$$${find}\:{sum}\:{of}\:{radii}\:\left({in}\:{terms}\:{of}\right. \\ $$$$\left.{sides}\:{of}\:\bigtriangleup{ABC}\right)\:{that}\:{touch} \\ $$$${two}\:{sides}\:{of}\:{the}\:{said}\:\bigtriangleup{ABC} \\ $$$${and}\:{outer}\:{sides}\:{of}\:{right}\:{angled}…
Question Number 92518 by I want to learn more last updated on 07/May/20 Answered by mr W last updated on 07/May/20 Commented by mr W…
Question Number 157965 by Tawa11 last updated on 30/Oct/21 Commented by Tawa11 last updated on 30/Oct/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{shaded}\:\mathrm{angles}. \\ $$ Answered by mr W last updated…
Question Number 26858 by $@ty@m last updated on 30/Dec/17 $${Prove}\:{that}\:{the}\:{internal}\:{bisector}\:{of}\:{an}\:{angle}\: \\ $$$${of}\:{a}\:{triangle}\:{divides}\:{the}\:{opposite} \\ $$$${sides}\:{in}\:{the}\:{ratio}\:{of}\:{the}\:{sides}\:{containing} \\ $$$${the}\:{angle}. \\ $$ Answered by mrW1 last updated on 30/Dec/17…