Menu Close

Category: Geometry

Question-153977

Question Number 153977 by mr W last updated on 12/Sep/21 Answered by mr W last updated on 12/Sep/21 $$\frac{{l}}{{a}}=\frac{\mathrm{sin}\:\left(\mathrm{45}+\alpha\right)}{\mathrm{sin}\:\alpha}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}+\mathrm{1}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}=\frac{\sqrt{\mathrm{2}}{l}}{{a}}−\mathrm{1} \\ $$$${similarly} \\ $$$$\frac{\mathrm{1}}{\mathrm{tan}\:\beta}=\frac{\sqrt{\mathrm{2}}{l}}{{b}}−\mathrm{1}…

find-the-equation-of-a-parabola-with-focus-3-3-and-directrix-y-0-

Question Number 88378 by Rio Michael last updated on 10/Apr/20 $$\:\mathrm{find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{parabola}\:\mathrm{with}\:\mathrm{focus}\:\left(\mathrm{3},\mathrm{3}\right) \\ $$$$\mathrm{and}\:\mathrm{directrix}\:\:{y}\:=\:\mathrm{0} \\ $$ Commented by john santu last updated on 10/Apr/20 $${o}\:{yes}.\:{should}\:{be}\:{a}\:{vertex}\: \\…

Question-88349

Question Number 88349 by ajfour last updated on 10/Apr/20 Commented by ajfour last updated on 10/Apr/20 $${If}\:{both}\:{circles}\:{have}\:{equal}\:{radius}, \\ $$$${and}\:{that}\:{they}\:{touch}\:{each}\:{other} \\ $$$${and}\:{line}\:{SP}\:\:{at}\:{the}\:{same}\:{point}\:{T}, \\ $$$${then}\:{determine}\:{the}\:{sector}\:\angle,\:\alpha. \\ $$…

sin-1-sin-10-10-or-3pi-10-Ans-is-3pi-10-How-

Question Number 22787 by vajpaithegrate@gmail.com last updated on 22/Oct/17 $$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\mathrm{10}\right)=\mathrm{10}\:\mathrm{or}\:\mathrm{3}\pi−\mathrm{10} \\ $$$$\mathrm{Ans}\:\mathrm{is}\:\mathrm{3}\pi−\mathrm{10}\:\:\:\mathrm{How} \\ $$ Commented by mrW1 last updated on 22/Oct/17 $$\mathrm{by}\:\mathrm{definition}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{sin}^{−\mathrm{1}} \:\left(\mathrm{x}\right)\:\mathrm{is}\:\left[−\frac{\pi}{\mathrm{2}},\:+\frac{\pi}{\mathrm{2}}\right] \\…

Question-22661

Question Number 22661 by ajfour last updated on 21/Oct/17 Commented by ajfour last updated on 21/Oct/17 $${Q}.\mathrm{22657}\:\left({solution}\:;\:{here}\:\:{becoz}\right. \\ $$$$\:\:\:\:\:\left({images}\:{from}\:{my}\:{cellphone}\right. \\ $$$$\:\:\:\:\:{gets}\:{uploaded}\:{only}\:{as}\:{new}\: \\ $$$$\:\:\:\:\:\:{question},\:{and}\:{rarely}\:{as}\:{ans} \\ $$$$\left.\:\:\:\:\:\:{or}\:{comment}\right).…