Menu Close

Category: Geometry

Question-84718

Question Number 84718 by Power last updated on 15/Mar/20 Answered by mr W last updated on 15/Mar/20 $${AC}^{\mathrm{2}} ={PA}^{\mathrm{2}} +{PC}^{\mathrm{2}} −\mathrm{2}×{PA}×{PC}\:\mathrm{cos}\:\mathrm{120}° \\ $$$$\Rightarrow{AC}^{\mathrm{2}} ={PA}^{\mathrm{2}} +{PC}^{\mathrm{2}}…

A-semicircle-is-tangent-to-both-legs-of-a-right-triangle-and-has-its-centre-on-the-hypotenuse-The-hypotenuse-is-partitioned-into-4-segments-with-lengths-3-12-12-and-x-as-shown-in-the-figure-Det

Question Number 19150 by Tinkutara last updated on 06/Aug/17 $$\mathrm{A}\:\mathrm{semicircle}\:\mathrm{is}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{both}\:\mathrm{legs}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{right}\:\mathrm{triangle}\:\mathrm{and}\:\mathrm{has}\:\mathrm{its}\:\mathrm{centre}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{hypotenuse}.\:\mathrm{The}\:\mathrm{hypotenuse}\:\mathrm{is} \\ $$$$\mathrm{partitioned}\:\mathrm{into}\:\mathrm{4}\:\mathrm{segments},\:\mathrm{with}\:\mathrm{lengths} \\ $$$$\mathrm{3},\:\mathrm{12},\:\mathrm{12},\:\mathrm{and}\:{x},\:\mathrm{as}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the}\:\mathrm{figure}. \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:'{x}'. \\ $$ Commented by Tinkutara…

Question-84689

Question Number 84689 by mr W last updated on 15/Mar/20 Commented by mr W last updated on 15/Mar/20 $${the}\:{parabola}\:{is}\:{rolled}\:{along}\:{the}\:{circle} \\ $$$${as}\:{shown}. \\ $$$${find}\:{the}\:{equation}\:{of}\:{the}\:{parabola}\:{when} \\ $$$${the}\:{touching}\:{point}\:{is}\:{at}\:{the}\:{position}\:\theta.…

Question-84655

Question Number 84655 by ajfour last updated on 14/Mar/20 Commented by ajfour last updated on 14/Mar/20 $${If}\:{area}\:{of}\:\bigtriangleup{ABC}\:\:{is}\:{equal}\:{to} \\ $$$${max}\:{trapezium}\:{area}\:{BCED}\:, \\ $$$${find}\:{r}\:{in}\:{terms}\:{of}\:{ellipse}\: \\ $$$${parameters}\:{a}\:{and}\:{b}. \\ $$…

Let-ABC-be-an-acute-angled-triangle-with-AC-BC-and-let-O-be-the-circumcenter-and-F-be-the-foot-of-altitude-through-C-Further-let-X-and-Y-be-the-feet-of-perpendiculars-dropped-from-A-and-B-respecti

Question Number 19104 by Tinkutara last updated on 04/Aug/17 $$\mathrm{Let}\:\mathrm{ABC}\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}-\mathrm{angled}\:\mathrm{triangle} \\ $$$$\mathrm{with}\:\mathrm{AC}\:\neq\:\mathrm{BC}\:\mathrm{and}\:\mathrm{let}\:\mathrm{O}\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{circumcenter}\:\mathrm{and}\:\mathrm{F}\:\mathrm{be}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of} \\ $$$$\mathrm{altitude}\:\mathrm{through}\:\mathrm{C}.\:\mathrm{Further},\:\mathrm{let}\:\mathrm{X}\:\mathrm{and}\:\mathrm{Y} \\ $$$$\mathrm{be}\:\mathrm{the}\:\mathrm{feet}\:\mathrm{of}\:\mathrm{perpendiculars}\:\mathrm{dropped} \\ $$$$\mathrm{from}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{respectively}\:\mathrm{to}\:\left(\mathrm{the}\right. \\ $$$$\left.\mathrm{extension}\:\mathrm{of}\right)\:\mathrm{CO}.\:\mathrm{The}\:\mathrm{line}\:\mathrm{FO}\:\mathrm{intersects} \\ $$$$\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\Delta\mathrm{FXY},\:\mathrm{second}\:\mathrm{time} \\…

Question-150150

Question Number 150150 by Tawa11 last updated on 09/Aug/21 Commented by MJS_new last updated on 10/Aug/21 $$\mathrm{6}×\mathrm{6}−\left[\mathrm{4}{quarter}\:{circles}\:{r}=\mathrm{2}\right]−\left[\mathrm{3}{circles}\:{r}=\mathrm{1}\right]= \\ $$$$=\mathrm{36}−\mathrm{7}\pi \\ $$ Commented by Tawa11 last…