Menu Close

Category: Geometry

Prove-that-the-perpendiculars-dropped-from-the-midpoints-of-the-sides-of-a-cyclic-quadrilateral-to-the-opposite-sides-are-concurrent-

Question Number 16075 by Tinkutara last updated on 17/Jun/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{perpendiculars} \\ $$$$\mathrm{dropped}\:\mathrm{from}\:\mathrm{the}\:\mathrm{midpoints}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{cyclic}\:\mathrm{quadrilateral}\:\mathrm{to}\:\mathrm{the}\:\mathrm{opposite} \\ $$$$\mathrm{sides}\:\mathrm{are}\:\mathrm{concurrent}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Let-A-B-and-C-be-points-on-the-sides-BC-CA-and-AB-of-the-triangle-ABC-Prove-that-the-circumcircles-of-the-triangles-AB-C-BA-C-and-CA-B-have-a-common-point-Prove-that-the-property-holds-even

Question Number 16071 by Tinkutara last updated on 21/Jun/17 $$\mathrm{Let}\:{A}',\:{B}'\:\mathrm{and}\:{C}'\:\mathrm{be}\:\mathrm{points}\:\mathrm{on}\:\mathrm{the}\:\mathrm{sides} \\ $$$${BC},\:{CA}\:\mathrm{and}\:{AB}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:{ABC}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{circumcircles}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{triangles}\:{AB}'{C}',\:{BA}'{C}'\:\mathrm{and}\:{CA}'{B}' \\ $$$$\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{point}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{property}\:\mathrm{holds}\:\mathrm{even}\:\mathrm{if}\:\mathrm{the}\:\mathrm{points}\:{A}', \\ $$$${B}'\:\mathrm{and}\:{C}'\:\mathrm{are}\:\mathrm{collinear}. \\ $$ Answered…

Let-ABCD-be-a-convex-quadrilateral-Prove-that-the-orthocenters-of-the-triangles-ABC-BCD-CDA-and-DAB-are-the-vertices-of-a-quadrilateral-congruent-to-ABCD-and-prove-that-the-centroids-of-the-same-tr

Question Number 16072 by Tinkutara last updated on 17/Jun/17 $$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{orthocenters}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{triangles}\:{ABC},\:{BCD},\:{CDA}\:\mathrm{and}\:{DAB} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{quadrilateral} \\ $$$$\mathrm{congruent}\:\mathrm{to}\:{ABCD}\:\mathrm{and}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{centroids}\:\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{triangles}\:\mathrm{are}\:\mathrm{the} \\ $$$$\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{cyclic}\:\mathrm{quadrilateral}. \\ $$ Commented…

Let-ABCD-be-a-convex-quadrilateral-and-let-E-and-F-be-the-points-of-intersections-of-the-lines-AB-CD-and-AD-BC-respectively-Prove-that-the-midpoints-of-the-segments-AC-BD-and-EF-are-collinear-

Question Number 16068 by Tinkutara last updated on 21/Jun/17 $$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral} \\ $$$$\mathrm{and}\:\mathrm{let}\:\mathrm{E}\:\mathrm{and}\:\mathrm{F}\:\mathrm{be}\:\mathrm{the}\:\mathrm{points}\:\mathrm{of} \\ $$$$\mathrm{intersections}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lines}\:{AB},\:{CD}\:\mathrm{and} \\ $$$${AD},\:{BC},\:\mathrm{respectively}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{midpoints}\:\mathrm{of}\:\mathrm{the}\:\mathrm{segments}\:{AC},\:{BD}, \\ $$$$\mathrm{and}\:{EF}\:\mathrm{are}\:\mathrm{collinear}. \\ $$ Answered by ajfour…

In-the-interior-of-a-quadrilateral-ABCD-consider-a-variable-point-P-Prove-that-if-the-sum-of-distances-from-P-to-the-sides-is-constant-then-ABCD-is-a-parallelogram-

Question Number 16069 by Tinkutara last updated on 21/Jun/17 $$\mathrm{In}\:\mathrm{the}\:\mathrm{interior}\:\mathrm{of}\:\mathrm{a}\:\mathrm{quadrilateral} \\ $$$${ABCD},\:\mathrm{consider}\:\mathrm{a}\:\mathrm{variable}\:\mathrm{point}\:{P}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{distances}\:\mathrm{from} \\ $$$${P}\:\mathrm{to}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{is}\:\mathrm{constant},\:\mathrm{then}\:{ABCD} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{parallelogram}. \\ $$ Terms of Service Privacy Policy…

Let-ABCD-be-a-convex-quadrilateral-Prove-that-AB-CD-AD-BC-AC-BD-if-and-only-if-ABCD-is-cyclic-Ptolemy-s-theorem-

Question Number 16070 by Tinkutara last updated on 21/Jun/17 $$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral}. \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$${AB}.{CD}\:+\:{AD}.{BC}\:=\:{AC}.{BD} \\ $$$$\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:{ABCD}\:\mathrm{is}\:\mathrm{cyclic}\:\left(\mathrm{Ptolemy}'\mathrm{s}\right. \\ $$$$\left.\mathrm{theorem}\right). \\ $$ Terms of Service Privacy Policy…

Let-ABCD-be-a-convex-quadrilateral-Find-the-locus-of-points-M-in-its-interior-such-that-MAB-2-MCD-

Question Number 16065 by Tinkutara last updated on 21/Jun/17 $$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{points}\:{M}\:\mathrm{in}\:\mathrm{its}\:\mathrm{interior} \\ $$$$\mathrm{such}\:\mathrm{that}\:\left[{MAB}\right]\:=\:\mathrm{2}\left[{MCD}\right]. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Let-ABCD-be-a-convex-quadrilateral-and-let-k-gt-0-be-a-real-number-Find-the-locus-of-points-M-in-its-interior-such-that-MAB-2-MCD-k-

Question Number 16066 by Tinkutara last updated on 21/Jun/17 $$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral} \\ $$$$\mathrm{and}\:\mathrm{let}\:{k}\:>\:\mathrm{0}\:\mathrm{be}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{points}\:{M}\:\mathrm{in}\:\mathrm{its}\:\mathrm{interior} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$$\left[{MAB}\right]\:+\:\mathrm{2}\left[{MCD}\right]\:=\:{k}. \\ $$ Answered by mrW1 last updated…

Let-d-d-be-two-nonparallel-lines-in-the-plane-and-let-k-gt-0-Find-the-locus-of-points-the-sum-of-whose-distances-to-d-and-d-is-equal-to-k-

Question Number 16067 by Tinkutara last updated on 21/Jun/17 $$\mathrm{Let}\:{d},\:{d}'\:\mathrm{be}\:\mathrm{two}\:\mathrm{nonparallel}\:\mathrm{lines}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{plane}\:\mathrm{and}\:\mathrm{let}\:{k}\:>\:\mathrm{0}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of} \\ $$$$\mathrm{points},\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{whose}\:\mathrm{distances}\:\mathrm{to} \\ $$$${d}\:\mathrm{and}\:{d}'\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:{k}. \\ $$ Commented by mrW1 last updated on 29/Jun/17…

Let-ABCD-be-a-convex-quadrilateral-and-M-a-point-in-its-interior-such-that-MAB-MBC-MCD-MDA-Prove-that-one-of-the-diagonals-of-ABCD-passes-through-the-midpoint-of-the-other-diagonal-

Question Number 16064 by Tinkutara last updated on 21/Jun/17 $$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral} \\ $$$$\mathrm{and}\:\mathrm{M}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{its}\:\mathrm{interior}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left[{MAB}\right]\:=\:\left[{MBC}\right]\:=\:\left[{MCD}\right]\:=\:\left[{MDA}\right]. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diagonals}\:\mathrm{of} \\ $$$${ABCD}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{other}\:\mathrm{diagonal}. \\ $$ Commented by Tinkutara…