Question Number 78246 by MJS last updated on 15/Jan/20 $$\mathrm{common}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{conic}\:\mathrm{sections} \\ $$$${ax}^{\mathrm{2}} +{bxy}+{cy}^{\mathrm{2}} +{dx}+{ey}+{f}=\mathrm{0} \\ $$$$\mathrm{if}\:{b}\neq\mathrm{0}\:\mathrm{we}\:\mathrm{rotate} \\ $$$$\mathrm{tan}\:\mathrm{2}\alpha\:=\frac{{b}}{{a}−{c}}\:\left[\mathrm{if}\:{a}={c}\:\Rightarrow\:\alpha=\mathrm{45}°\right] \\ $$$$\begin{cases}{{x}={x}'\mathrm{cos}\:\alpha\:−{y}'\mathrm{sin}\:\alpha}\\{{y}={x}'\mathrm{sin}\:\alpha\:+{y}'\mathrm{cos}\:\alpha}\end{cases} \\ $$$$\mathrm{we}\:\mathrm{now}\:\mathrm{have}\:\left[\mathrm{using}\:{x},\:{y}\:\mathrm{again}\:\mathrm{instead}\:\mathrm{of}\:{x}',\:{y}'\right] \\ $$$${Ax}^{\mathrm{2}} +{Cy}^{\mathrm{2}}…
Question Number 78216 by TawaTawa last updated on 15/Jan/20 Commented by TawaTawa last updated on 15/Jan/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rectangle}. \\ $$ Commented by mr W last updated…
Question Number 78153 by ajfour last updated on 14/Jan/20 Commented by ajfour last updated on 14/Jan/20 $${Find}\:{h}\:{in}\:{terms}\:{of}\:{c}. \\ $$ Answered by mr W last updated…
Question Number 12569 by JAZAR last updated on 25/Apr/17 $${tank}\:{you} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 12566 by JAZAR last updated on 25/Apr/17 $${we}\:{give}\:{U}_{\mathrm{1}} ,{U}_{\mathrm{2}} ,{U}_{\mathrm{3}} \:{the}\:{terms}\:{of}\:{a}\:{geometric}\:{sequence} \\ $$$$.{Determine}\:{U}_{\mathrm{1}} ,{U}_{\mathrm{2}} ,{U}_{\mathrm{3}} \:{such}\:{that}\:: \\ $$$$ \\ $$$$\begin{cases}{{U}_{\mathrm{1}} .{U}_{\mathrm{2}} .{U}_{\mathrm{3}} =\mathrm{64}}\\{{U}_{\mathrm{1}}…
Question Number 12553 by Joel577 last updated on 25/Apr/17 $$\mathrm{Using}\:\mathrm{Laplace}\:\mathrm{Transform},\:\mathrm{solve} \\ $$$${f}\left({t}\right)\:=\:\frac{\mathrm{sin}\:\mathrm{3}{t}}{{t}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 12534 by JAZAR last updated on 24/Apr/17 $${please}\:{help}\:{me}\:.{How}\:{can}\:{resolve}\:{this}\:{system}? \\ $$$$\left\{_{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}+{y}=\mathrm{1}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}} \right. \\ $$ Answered by geovane10math last updated on 25/Apr/17…
Question Number 78056 by ajfour last updated on 13/Jan/20 Answered by ajfour last updated on 13/Jan/20 $${It}\:{is}\:{from}\:{aid}\:{of}\:{another} \\ $$$${diagram}\:{that}\:{x}^{\mathrm{3}} −{x}=\mathrm{2}{c}\:\:\:\:….\left({i}\right) \\ $$$${From}\:{here} \\ $$$${first}\:{let}\:{AH}={r} \\…
Question Number 78042 by $@ty@m123 last updated on 13/Jan/20 Answered by mr W last updated on 13/Jan/20 Commented by mr W last updated on 13/Jan/20…
Question Number 12506 by Joel577 last updated on 24/Apr/17 $$\mathrm{A}\:\mathrm{wooden}\:\mathrm{stick}\:\mathrm{was}\:\mathrm{broken}\:\mathrm{randomly}\:\mathrm{into} \\ $$$$\mathrm{three}\:\mathrm{pieces}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{built}\:\mathrm{from}\:\mathrm{those}\:\mathrm{three}\:\mathrm{parts}? \\ $$ Answered by mrW1 last updated on 25/Apr/17 $${Let}'{s}\:{say}\:{the}\:{wooden}\:{stick}\:{is}\:{brocken}\: \\…