Menu Close

Category: Geometry

Question-12148

Question Number 12148 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17 Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17 $${OA}={OC}={OD}={OB}={R},{OE}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$${BE}\bot{ED},{FG}\bot{CD},{FH}\bot{AB},\measuredangle{OEB}=\measuredangle{OED}. \\ $$$${find}:\:\:{HE}\:\:{and}\:{EG}\:{in}\:{term}\:{of}\::\:{R} \\ $$ Commented by…

Question-77681

Question Number 77681 by mr W last updated on 09/Jan/20 Commented by mr W last updated on 09/Jan/20 $${The}\:{radii}\:\boldsymbol{{a}},\:\boldsymbol{{b}},\:\boldsymbol{{c}}\:{are}\:{given}. \\ $$$$\mathrm{1}.\:{Find}\:{radius}\:\boldsymbol{{R}}\:{of}\:{the}\:{circumcircle} \\ $$$$\mathrm{2}.\:{Find}\:{radius}\:\boldsymbol{{d}}\:{of}\:{the}\:{fourth}\:{circle} \\ $$…

a-cube-has-a-rib-ABCD-EFGH-the-midle-point-P-on-BF-so-that-BP-PF-and-the-midle-point-Q-on-FG-so-that-FQ-QG-how-long-projection-point-C-to-APQH-field-

Question Number 12131 by Peter last updated on 14/Apr/17 $${a}\:{cube}\:{has}\:{a}\:{rib}\:{ABCD}.{EFGH},\:{the}\:{midle}\:{point}\:{P}\:\:{on}\:{BF}\:{so}\:{that}\:{BP}\:=\:{PF}, \\ $$$${and}\:{the}\:{midle}\:{point}\:{Q}\:{on}\:{FG}\:{so}\:{that}\:{FQ}\:=\:{QG} \\ $$$${how}\:{long}\:{projection}\:{point}\:{C}\:{to}\:{APQH}\:{field}\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Find-the-remainder-when-x-x-25-x-49-x-81-is-divided-by-x-3-1-

Question Number 77655 by TawaTawa last updated on 08/Jan/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:\:\:\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{25}} \:+\:\mathrm{x}^{\mathrm{49}} \:+\:\mathrm{x}^{\mathrm{81}} \:\:\mathrm{is}\:\mathrm{divided} \\ $$$$\mathrm{by}\:\:\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{1} \\ $$ Commented by jagoll last updated on 08/Jan/20…

how-much-matrices-of-integers-number-A-a-b-c-d-if-A-2-I-and-b-c-

Question Number 12045 by 7991 last updated on 10/Apr/17 $${how}\:{much}\:{matrices}\:{of}\:{integers}\:{number} \\ $$$${A}=\begin{bmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{bmatrix}{if}\:{A}^{\mathrm{2}} ={I}\:{and}\:{b}={c} \\ $$ Answered by sma3l2996 last updated on 10/Apr/17 $${A}^{\mathrm{2}} =\begin{bmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{bmatrix}\begin{bmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{bmatrix}=\begin{bmatrix}{{a}^{\mathrm{2}} +{bc}}&{{ab}+{db}}\\{{ac}+{dc}}&{{bc}+{d}^{\mathrm{2}}…