Menu Close

Category: Geometry

the-center-of-circle-in-2x-y-11-0-determine-the-equation-of-circle-that-passing-through-1-3-7-1-

Question Number 5982 by Kasih last updated on 08/Jun/16 $${the}\:{center}\:{of}\:{circle}\:{in}\:\mathrm{2}{x}+{y}−\mathrm{11}=\mathrm{0} \\ $$$${determine}\:{the}\:{equation}\:{of}\:{circle}\:{that} \\ $$$${passing}\:{through}\:\left(−\mathrm{1},\mathrm{3}\right),\left(\mathrm{7},−\mathrm{1}\right) \\ $$ Commented by Rasheed Soomro last updated on 08/Jun/16 $${the}\:{center}\:{of}\:{circle}\:{in}\:\mathrm{2}{x}+{y}−\mathrm{11}=\mathrm{0}…

Question-71517

Question Number 71517 by TawaTawa last updated on 16/Oct/19 Answered by mind is power last updated on 16/Oct/19 $$\mathrm{AD}=\mathrm{x} \\ $$$$\frac{\mathrm{x}}{\mathrm{sin}\left(\theta\right)}=\frac{\mathrm{DC}}{\mathrm{sin}\left(\theta\right)}\Rightarrow\mathrm{1}=\frac{\mathrm{x}}{\mathrm{DC}} \\ $$$$\frac{\mathrm{x}}{\mathrm{sin}\left(\mathrm{3}\theta\right)}=\frac{\mathrm{DC}}{\mathrm{sin}\left(\mathrm{10}\theta\right)}\Rightarrow\frac{\mathrm{x}}{\mathrm{DC}}=\frac{\mathrm{sin}\left(\mathrm{3}\theta\right)}{\mathrm{sin}\left(\mathrm{10}\theta\right)} \\ $$$$…

Question-71410

Question Number 71410 by TawaTawa last updated on 15/Oct/19 Answered by MJS last updated on 15/Oct/19 $${A}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{{p}}\\{\mathrm{0}}\end{pmatrix}\:\:{C}=\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix}\:\:{D}=\begin{pmatrix}{\mathrm{0}}\\{{q}}\end{pmatrix} \\ $$$${DC}:\:{y}={q} \\ $$$${AC}:\:{y}=\frac{{q}}{{p}}{x} \\ $$$${BE}:\:{y}=−\frac{{p}}{{q}}{x}+\frac{{p}^{\mathrm{2}} }{{q}} \\…