Question Number 3877 by Rasheed Soomro last updated on 23/Dec/15 $$\mathcal{W}{hat}\:{is}\:{the}\:{area}\:{of}\:\:{overlapping} \\ $$$${region}\:{of}\:{two}\:{circles}\:{having}\:{radii} \\ $$$$\boldsymbol{\mathrm{r}}_{\mathrm{1}} \:{and}\:\boldsymbol{\mathrm{r}}_{\mathrm{2}} \:{when}\:{the}\:{distance}\:{between} \\ $$$${their}\:{centres}\:{is}\:\:\boldsymbol{\mathrm{c}},\:{given}\:{that}\:\boldsymbol{\mathrm{r}}_{\mathrm{1}} +\boldsymbol{\mathrm{r}}_{\mathrm{2}} >\boldsymbol{\mathrm{c}}. \\ $$ Commented by…
Question Number 69385 by Maclaurin Stickker last updated on 23/Sep/19 Answered by Maclaurin Stickker last updated on 23/Sep/19 $${There}\:{is}\:{another}\:{way}\:{to}\:{solve}\:{this} \\ $$$${question}\:{just}\:{using}\:{algebra}: \\ $$$$\frac{{FD}}{\mathrm{1}}=\frac{{x}}{{x}+\mathrm{1}}\Rightarrow{FD}=\frac{{x}}{{x}+\mathrm{1}}\:{Now}\:{we}\:{can}\:{use} \\ $$$${Pythagorean}\:{theorem}\:{on}\:\bigtriangleup{FDE}:…
Question Number 3850 by Rasheed Soomro last updated on 22/Dec/15 $${How}\:{many}\:{dimention}/{s}\:{does}\:{the}\:{point}\:{have}? \\ $$ Commented by prakash jain last updated on 22/Dec/15 $$\mathrm{In}\:\mathrm{3D}\:\mathrm{cartesian}\:\mathrm{coordinate}\:\mathrm{you}\:\mathrm{need}\:\left({x},{y},{z}\right) \\ $$$$\mathrm{to}\:\mathrm{uniquely}\:\mathrm{describe}\:\mathrm{a}\:\mathrm{point}. \\…
Question Number 3843 by Rasheed Soomro last updated on 22/Dec/15 $$\mathcal{L}{et}\:{the}\:{side}\:{of}\:{the}\:{following}\:{mentioned} \\ $$$${figures}\:{is}\:\boldsymbol{\mathrm{s}}: \\ $$$${The}\:{area}\:{of}\:{square}\:{is}\:\boldsymbol{\mathrm{s}}^{\mathrm{2}} ,\:{the}\:\mathrm{3}{D}\:{area}\left({volume}\right) \\ $$$${of}\:{a}\:{cube}\:{is}\:\boldsymbol{\mathrm{s}}^{\mathrm{3}} ,{the}\:\mathrm{4}{D}\:{area}/{volume}\:{of}\:\mathrm{4}{D} \\ $$$${hypercube}\:{can}\:{be}\:{said}\:\boldsymbol{\mathrm{s}}^{\mathrm{4}} \:{and}\:{so}\:{on}. \\ $$$$ \\…
Question Number 3840 by Rasheed Soomro last updated on 22/Dec/15 $$\mathcal{A}\:\:{semicircle}\:\:{contains}\:{a}\:{square}\:\:{of}\:\: \\ $$$${possible}\:{largest}\:{area}.{If}\:\:{s}\:\:{is}\:{the}\:{measure} \\ $$$${of}\:{the}\:{side}\:{of}\:{the}\:{square},{what}\:{is}\:{the} \\ $$$${radius}\:{of}\:{the}\:{semicircle}? \\ $$ Answered by Yozzii last updated on…
Question Number 3838 by Rasheed Soomro last updated on 22/Dec/15 $${Show}\:{that}\:{the}\:{construction}\:{of} \\ $$$$\:\:\:\:\:\:\mathrm{the}\:\mathrm{rectangle}\:\mathrm{of}\:\mathrm{minimum}\: \\ $$$$\:\:\:\:\:\:\mathrm{perimeter}\:\mathrm{when}\:\mathrm{its}\:\mathrm{area}\:\:\mathrm{is}\:\boldsymbol{\mathrm{ab}}\: \\ $$$$\:\:\:\:\:\:\mathrm{where}\:\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{AB}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{CD}}\:\mathrm{are}\:\:\mathrm{given} \\ $$$${is}\:{possible}\:{with}\:{ruler}\:{and}\:{compass}.\:\:\:\:\: \\ $$$$ \\ $$ Commented by…
Question Number 3836 by Rasheed Soomro last updated on 22/Dec/15 $${A}\:{square},{whose}\:{area}\:{is}\:{s}^{\mathrm{2}} ,{contains}\: \\ $$$${a}\:{semicircle}\:{of}\:{possible}\:{largest}\:{area}. \\ $$$${Determine}\:{radius}\:{of}\:{the}\:{semicircle}. \\ $$ Commented by Yozzii last updated on 24/Dec/15…
Question Number 3830 by Rasheed Soomro last updated on 21/Dec/15 $$\mathcal{D}{raw}\:{a}\:{rectangle}\:{of}\:{maximum}\:{perimeter}, \\ $$$${by}\:{ruler}\:{and}\:{compass},{when}\:{area}\:{is}\:\boldsymbol{\mathrm{ab}}.\: \\ $$$$\left(\boldsymbol{\mathrm{AB}}\:=\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{CD}}=\boldsymbol{\mathrm{b}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{given}}.\right) \\ $$ Commented by prakash jain last updated on 22/Dec/15…
Question Number 3823 by Rasheed Soomro last updated on 21/Dec/15 $${Consider}\:{a}\:{triangle}\:\mathrm{ABC}.\:{Let}\:\mathrm{D}\:\:{and}\:\:\mathrm{E} \\ $$$${are}\:{two}\:{points}\:{on}\:\mathrm{AB}\:\:{and}\:\:\mathrm{AC}\:{respectively} \\ $$$${such}\:{that}\:\mathrm{DE}\:\parallel\:\mathrm{BC}.\:{Now}\:{there}\:{are}\:{two} \\ $$$${parts}\:{of}\:\bigtriangleup\mathrm{ABC}\::\:\bigtriangleup\mathrm{ADE}\:\:\:{and}\:\:{trapizoid} \\ $$$$\mathrm{DBCE}.\:{If}\:{these}\:{two}\:{regions}\:{have}\:{same}\:{area} \\ $$$${What}\:{will}\:{be}\:{the}\:{ratio}\:{of}\:{two}\:{distances}\:: \\ $$$$\left({i}\right)\:{distance}\:{of}\:\mathrm{DE}\:{from}\:{point}\:\mathrm{A}\:{and} \\ $$$$\left({ii}\right)\:{distance}\:{between}\:\mathrm{BC}\:{and}\:\mathrm{DE}\:\:?…
Question Number 3808 by Rasheed Soomro last updated on 21/Dec/15 $${A}\:{chord}\:{divides}\:\:{the}\:{circle}\:{in}\:{two} \\ $$$${segments},{having}\:{areas}\:{s}_{\mathrm{1}} \:{and}\:\:{s}_{\mathrm{2}} . \\ $$$${If}\:{diameter},\:{perpendicular}\:{to}\:{this} \\ $$$${chord}\:{is}\:{cut}\:{into}\:\mathrm{1}:\mathrm{3}\:{by}\:{the}\:{chord}\:,{what}\:{is}\:{s}_{\mathrm{1}} :{s}_{\mathrm{2}} \:? \\ $$$$ \\ $$…