Menu Close

Category: Geometry

Question-63663

Question Number 63663 by Tawa1 last updated on 07/Jul/19 Answered by mr W last updated on 07/Jul/19 $$\angle{ADB}=\mathrm{360}−\left(\mathrm{180}−\mathrm{6}−\mathrm{30}\right)−\left(\mathrm{180}−\mathrm{6}−\mathrm{24}\right)=\mathrm{66}° \\ $$$$\frac{{AD}}{{DC}}=\frac{\mathrm{sin}\:\mathrm{30}°}{\mathrm{sin}\:\mathrm{6}°} \\ $$$$\frac{{BD}}{{DC}}=\frac{\mathrm{sin}\:\mathrm{24}°}{\mathrm{sin}\:\mathrm{6}°} \\ $$$$\Rightarrow\frac{{AD}}{{BD}}=\frac{\mathrm{sin}\:\mathrm{30}°}{\mathrm{sin}\:\mathrm{24}°} \\…

Question-63564

Question Number 63564 by Tawa1 last updated on 05/Jul/19 Answered by MJS last updated on 05/Jul/19 $$\mathrm{the}\:\mathrm{flower}\:\mathrm{has}\:\mathrm{got}\:\mathrm{12}\:\mathrm{arcs},\:\mathrm{each}\:\mathrm{one}\:\mathrm{of}\:\mathrm{length} \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}×\mathrm{perimeter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\Rightarrow\: \\ $$$${p}=\mathrm{12}×\frac{\mathrm{1}}{\mathrm{6}}×\mathrm{2}\pi{r}=\mathrm{4}\pi{r} \\ $$$${r}=\mathrm{10}\:\Rightarrow\:{p}=\mathrm{40}\pi \\ $$…

Question-129077

Question Number 129077 by Study last updated on 12/Jan/21 Commented by benjo_mathlover last updated on 12/Jan/21 $$\frac{\mathrm{FG}}{\mathrm{8}}\:=\:\frac{\mathrm{5}}{\mathrm{6}}\Rightarrow\mathrm{FG}=\frac{\mathrm{20}}{\mathrm{3}} \\ $$$$\frac{\mathrm{DE}}{\mathrm{8}}=\frac{\mathrm{3}}{\mathrm{6}}\Rightarrow\mathrm{DE}=\mathrm{4} \\ $$$$\mathrm{Area}\:\mathrm{FGED}\:=\:\frac{\mathrm{8}×\mathrm{6}}{\mathrm{2}}−\frac{\frac{\mathrm{20}}{\mathrm{3}}+\mathrm{8}}{\mathrm{2}}×\mathrm{1}−\frac{\mathrm{3}×\mathrm{4}}{\mathrm{2}}\: \\ $$$$\:=\:\mathrm{24}−\left(\frac{\mathrm{10}}{\mathrm{3}}+\mathrm{4}\right)−\mathrm{6} \\ $$$$\:=\:\mathrm{18}−\frac{\mathrm{22}}{\mathrm{3}}\:=\:\frac{\mathrm{32}}{\mathrm{3}}…

Question-63324

Question Number 63324 by pradyot_pathak last updated on 02/Jul/19 Answered by Hope last updated on 02/Jul/19 $${area}\:{of}\:{pentagon}=\frac{\mathrm{1}}{\mathrm{4}}×\mathrm{5}×\mathrm{12}^{\mathrm{2}} ×{cot}\left(\frac{\mathrm{180}^{{o}} }{\mathrm{5}}\right) \\ $$$$=\mathrm{180}×{cot}\mathrm{36}^{{o}} \\ $$$${external}\:{angle}=\frac{\mathrm{360}^{{o}} }{\mathrm{5}}=\mathrm{72}^{{o}} \\…