Menu Close

Category: Integration

Prove-pi-pi-z-sin-z-1-z-1-z-2-3-sin-2-z-dz-2-

Question Number 222275 by Nicholas666 last updated on 21/Jun/25 $$ \\ $$$$\:\:\mathrm{Prove}\:;\:\int_{−\pi} ^{\:\pi} \:\frac{{z}\:\mathrm{sin}\left({z}\right)\:}{\left(\mathrm{1}\:+\:{z}\:+\:\sqrt{\mathrm{1}\:+\:{z}^{\mathrm{2}} }\right)\sqrt{\mathrm{3}\:+\:\mathrm{sin}^{\mathrm{2}} \left({z}\right)}}\:{dz}\:=\:\zeta\left(\mathrm{2}\right)\:\:\:\:\:\:\:\: \\ $$$$ \\ $$ Answered by MrGaster last updated…

Prove-0-1-ln-1-x-2-x-cos-ln-x-dx-1-pi-2-cosh-pi-2-

Question Number 222224 by MrGaster last updated on 20/Jun/25 $$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}}\mathrm{cos}\left(\mathrm{ln}\:{x}\right){dx}=\mathrm{1}−\frac{\pi}{\mathrm{2}}\mathrm{cosh}\frac{\pi}{\mathrm{2}} \\ $$ Commented by Nicholas666 last updated on 21/Jun/25 $$\:\mathrm{i}\:\mathrm{think}\:\mathrm{the}\:\mathrm{statment}\:\mathrm{is}\:\mathrm{wrong},\: \\ $$$$\mathrm{no}\:\mathrm{1}−\frac{\pi}{\mathrm{2}}\:\mathrm{cosh}\:\frac{\pi}{\mathrm{2}}\:\mathrm{but}\:\mathrm{1}\:−\frac{\pi}{\mathrm{2}}\mathrm{chot}\:\left(\frac{\pi}{\mathrm{2}}\right)…

0-0-ln-x-ln-y-xy-cos-x-y-pi-2-2-ln-2-Sol-0-0-ln-x-ln-y-xy-cos-x-y-dxdy-Re-0-x-1-2-e-ix-ln-xdx-0-y-1-2-e-iy-ln-ydy-0-x-a-e

Question Number 222217 by MrGaster last updated on 20/Jun/25 $$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\:{x}\:\mathrm{ln}\:{y}}{\:\sqrt{{xy}}}\mathrm{cos}\left({x}+{y}\right)=\pi^{\mathrm{2}} \left(\gamma+\mathrm{2}\:\mathrm{ln}\:\mathrm{2}\right) \\ $$$$\mathrm{Sol}:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\:{x}\:\mathrm{ln}\:{y}}{\:\sqrt{{xy}}}\mathrm{cos}\left({x}+{y}\right){dxdy}=\mathrm{Re}\left(\left(\int_{\mathrm{0}} ^{\infty} {x}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{{ix}} \mathrm{ln}\:{xdx}\right)\left(\int_{\mathrm{0}}…

0-pi-2-cos-1-1-sin-2-x-cos-2-x-1-sin-2-x-ln-1-sin-x-1-cos-x-1-cos-2-x-sin-2-x-dx-

Question Number 222245 by Nicholas666 last updated on 20/Jun/25 $$ \\ $$$$\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\:\frac{\mathrm{cos}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}\:−\:\mathrm{sin}^{\mathrm{2}} \left({x}\right)\:\mathrm{cos}^{\mathrm{2}} \left({x}\right)}}{\mathrm{1}\:+\:\mathrm{sin}^{\mathrm{2}} \left({x}\right)}\right)\centerdot\mathrm{ln}\left(\frac{\mathrm{1}\:+\:\mathrm{sin}\left({x}\right)}{\mathrm{1}\:+\:\mathrm{cos}\left({x}\right)}\right)}{\:\sqrt{\mathrm{1}\:+\:\mathrm{cos}^{\mathrm{2}} \left({x}\right)\:−\:\mathrm{sin}^{\mathrm{2}} \left({x}\right)}}\:\:\mathrm{d}{x}\:\:\:\:\:\: \\ $$$$ \\ $$ Answered…

solve-e-2y-y-cosx-dy-dx-e-y-sin2x-klipto-quanta-

Question Number 222175 by klipto last updated on 19/Jun/25 $$\boldsymbol{\mathrm{solve}} \\ $$$$\left(\boldsymbol{\mathrm{e}}^{\mathrm{2}\boldsymbol{\mathrm{y}}} −\boldsymbol{\mathrm{y}}\right)\boldsymbol{\mathrm{cosx}}\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}=\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{y}}} \boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{x}} \\ $$$$\boldsymbol{\mathrm{klipto}}−\boldsymbol{\mathrm{quanta}} \\ $$ Answered by som(math1967) last updated on 20/Jun/25…