Menu Close

Category: Integration

Question-63410

Question Number 63410 by aliesam last updated on 03/Jul/19 Commented by mathmax by abdo last updated on 03/Jul/19 $$\left.\mathrm{2}\right)\:{let}\:{I}\:=\int\:\:\:\frac{{xdx}}{\mathrm{1}+{sinx}}\:\:\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give}\: \\ $$$${I}\:=\:\int\:\:\:\frac{\mathrm{2}{arctan}\left({t}\right)}{\left(\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt}\:=\:\mathrm{2}\int\:\:\:\:\frac{{arctan}\left({t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} \:+\mathrm{2}{t}}\:{dt}\:=\mathrm{2}\:\int\:\:\:\frac{{arctan}\left({t}\right)}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:{dt}\:\:…

1-find-x-1-x-3-3x-2-dx-2-calculate-4-x-1-x-3-3x-2-dx-

Question Number 63404 by mathmax by abdo last updated on 03/Jul/19 $$\left.\mathrm{1}\right)\:{find}\:\:\int\:\:\:\:\frac{{x}+\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{3}{x}\:−\mathrm{2}}{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{4}} ^{+\infty} \:\:\:\:\:\frac{{x}+\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{3}{x}\:+\mathrm{2}}{dx} \\ $$ Commented by MJS last updated…

let-f-t-0-ln-1-tx-1-x-2-dx-with-t-lt-1-1-determine-a-explicit-form-of-f-t-2-find-the-value-of-0-ln-1-x-1-x-2-dx-

Question Number 63395 by mathmax by abdo last updated on 03/Jul/19 $${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{tx}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:\:\:{with}\:\:\mid{t}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$ Commented…

4x-5-x-2-x-3-x-4-x-5-1-dx-

Question Number 128900 by bemath last updated on 11/Jan/21 $$\:\int\:\frac{\mathrm{4x}+\mathrm{5}}{\left(\mathrm{x}+\mathrm{2}\right)\left(\mathrm{x}+\mathrm{3}\right)\left(\mathrm{x}+\mathrm{4}\right)\left(\mathrm{x}+\mathrm{5}\right)+\mathrm{1}}\:\mathrm{dx}?\: \\ $$ Answered by liberty last updated on 11/Jan/21 $$\:\int\:\frac{\mathrm{4x}+\mathrm{5}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{7x}+\mathrm{10}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{7x}+\mathrm{12}\right)+\mathrm{1}}\:\mathrm{dx}=\left(\ast\right) \\ $$$$\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{7x}+\mathrm{10}\right)\left(\mathrm{x}^{\mathrm{2}}…

x-1-x-2-x-3-x-4-x-5-x-6-dx-

Question Number 128888 by bemath last updated on 11/Jan/21 $$\:\int\:\frac{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}−\mathrm{3}\right)}{\left(\mathrm{x}−\mathrm{4}\right)\left(\mathrm{x}−\mathrm{5}\right)\left(\mathrm{x}−\mathrm{6}\right)}\:\mathrm{dx}\:=? \\ $$ Answered by Olaf last updated on 11/Jan/21 $$\Omega\:=\:\int\frac{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)}{\left({x}−\mathrm{4}\right)\left({x}−\mathrm{5}\right)\left({x}−\mathrm{6}\right)}{dx} \\ $$$$\Omega\:=\:\int\left(\mathrm{1}+\frac{\mathrm{A}}{{x}−\mathrm{4}}+\frac{\mathrm{B}}{{x}−\mathrm{5}}+\frac{\mathrm{C}}{{x}−\mathrm{6}}\right){dx} \\ $$$$\mathrm{A}\:=\:\frac{\mathrm{3}×\mathrm{2}×\mathrm{1}}{\left(−\mathrm{1}\right)\left(−\mathrm{2}\right)}\:=\:\mathrm{3} \\…