Menu Close

Category: Integration

Prove-0-1-arcsinx-1-x-4-dx-2-pi-2-16-2-pi-8-ln-2-1-2-n-0-n-2n-1-z-0-2n-1-sin-pi-4-2n-1-

Question Number 221770 by MrGaster last updated on 10/Jun/25 $$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{arcsin}{x}}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}=\frac{\sqrt{\mathrm{2}}\pi^{\mathrm{2}} }{\mathrm{16}}−\frac{\sqrt{\mathrm{2}}\pi}{\mathrm{8}}\mathrm{ln}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)+\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}\mid{z}_{\mathrm{0}} \mid^{\mathrm{2}{n}+\mathrm{1}} \mathrm{sin}\left(\frac{\pi}{\mathrm{4}}−\left(\mathrm{2}{n}+\mathrm{1}\right)\beta\right) \\ $$ Terms of Service Privacy…

Prove-0-1-k-1-1-x-k-dx-4pi-3-23-sinh-23-pi-6-2-cosh-23-pi-3-1-

Question Number 221663 by MrGaster last updated on 09/Jun/25 $$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−{x}^{{k}} \right){dx}=\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{23}}}\centerdot\frac{\mathrm{sinh}\frac{\sqrt{\mathrm{23}}\pi}{\mathrm{6}}}{\mathrm{2}\:\mathrm{cosh}\frac{\sqrt{\mathrm{23}}\pi}{\mathrm{3}}−\mathrm{1}} \\ $$ Commented by MrGaster last updated on 09/Jun/25 It is difficult for me to give an analytical solution to that integral.…

1-0-u-x-1-u-2-x-2-1-e-x-dx-n-0-n-n-0-u-x-n-1-u-2-x-2-1-dx-n-0-n-n-u-2-n-2-2-B-n-2-u-2-2-2-n-0-n-

Question Number 221582 by MrGaster last updated on 08/Jun/25 $$\left(\mathrm{1}\right):\int_{\mathrm{0}} ^{{u}} {x}^{\nu−\mathrm{1}} \left({u}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)^{\varrho−\mathrm{1}} {e}^{\mu{x}} {dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mu^{{n}} }{{n}!}\int_{\mathrm{0}} ^{{u}} {x}^{\nu+{n}−\mathrm{1}} \left({u}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)^{\varrho−\mathrm{1}}…

Question-221583

Question Number 221583 by MrGaster last updated on 08/Jun/25 Answered by MrGaster last updated on 08/Jun/25 $$=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{1}/\mathrm{11}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\mathrm{9}/\mathrm{11}−\mathrm{1}} \beta\left(\frac{\:\mathrm{1}}{\mathrm{11}},\frac{\mathrm{9}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{11}}\right)\left(\int_{\mathrm{0}} ^{\mathrm{1}} {s}^{\mathrm{3}/\mathrm{11}−\mathrm{1}} \left(\mathrm{1}−{s}\right)^{\mathrm{5}/\mathrm{11}−\mathrm{1}} \beta\left(\frac{\mathrm{3}}{\mathrm{11}},\frac{\mathrm{5}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{11}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{11}}\right)\int_{\mathrm{0}}…

Prove-0-1-xdx-x-2-1-e-2pix-1-2-1-4-where-is-a-Euler-s-Mascheroni-constant-

Question Number 221577 by Nicholas666 last updated on 08/Jun/25 $$ \\ $$$$\:\:\:\:\:\:\mathrm{Prove};\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{x}\mathrm{d}{x}}{\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({e}^{\mathrm{2}\pi{x}} \:−\:\mathrm{1}\right)}\:=\:\frac{\gamma}{\mathrm{2}}\:−\:\frac{\mathrm{1}}{\mathrm{4}}\:\: \\ $$$$\:\:\:\:\mathrm{where};\:\gamma\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{Euler}'\mathrm{s}\:\mathrm{Mascheroni}\:\mathrm{constant}\:\:\:\: \\ $$$$ \\ $$ Answered by MrGaster…

sin-2x-1-sin-3x-dx-

Question Number 221601 by Nicholas666 last updated on 08/Jun/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\frac{{sin}\:\mathrm{2}{x}}{\mathrm{1}\:+\:{sin}\:\mathrm{3}{x}}\:{dx} \\ $$$$ \\ $$ Answered by Frix last updated on 08/Jun/25 $$=−\mathrm{2}\int\frac{\mathrm{cos}\:{x}\:\mathrm{sin}\:{x}}{\mathrm{4sin}^{\mathrm{3}} \:{x}\:−\mathrm{3sin}\:{x}\:+\mathrm{1}}{dx}\:\overset{\left[{t}=\mathrm{sin}\:{x}\right]}…