Menu Close

Category: Integration

0-1-arcsin-sin-x-2-dx-

Question Number 126997 by bramlexs22 last updated on 26/Dec/20 $$\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{arcsin}\:\left(\frac{\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{2}}}\right)\:{dx}\:=? \\ $$ Answered by Evimene last updated on 26/Dec/20 $$\mathrm{solution} \\ $$$$\mathrm{let}\:\sqrt{\mathrm{2}}=\alpha \\…

nice-calculus-prove-that-I-0-pi-2-cot-x-cot-x-dx-1-2-pi-ln-sinh-pi-pi-x-is-fractional-part-of-x-

Question Number 126986 by mnjuly1970 last updated on 25/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:{calculus}… \\ $$$$\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\left\{{cot}\left({x}\right)\right\}}{{cot}\left({x}\right)}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\left(\pi−{ln}\left(\frac{{sinh}\left(\pi\right)}{\pi}\right)\right) \\ $$$$\left\{{x}\right\}\:{is}\:{fractional}\:{part}\:{of}\:\:{x}\:.. \\ $$ Answered by Olaf last updated…

Question-192470

Question Number 192470 by Spillover last updated on 19/May/23 Answered by Spillover last updated on 19/May/23 $$\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \sqrt{\mathrm{1}+\left(\mathrm{2}{x}\right)^{\mathrm{2}} }\:{dx} \\ $$$${Let}\:\:\:\mathrm{2}{x}=\mathrm{sinh}\:\theta\:\:\:\:\:\:\:\:\:\:\:{dx}=\:\frac{\mathrm{cosh}\:\theta{d}\theta}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}}…