Menu Close

Category: Integration

tan-1-x-sec-x-1-sec-x-sec-x-dx-

Question Number 221203 by Nicholas666 last updated on 27/May/25 $$ \\ $$$$\:\:\:\:\:\int\:\mathrm{tan}\left(\frac{\frac{\mathrm{1}}{{x}}}{\mathrm{sec}\left({x}\right)}\right)\:+\:\frac{\mathrm{1}\:−\:\mathrm{sec}\left({x}\right)}{\mathrm{sec}\left({x}\right)}\:\mathrm{d}{x} \\ $$$$ \\ $$ Answered by SdC355 last updated on 27/May/25 $$\int\:\:\left[\mathrm{tan}\left(\frac{\mathrm{cos}\left({z}\right)}{{z}}\right)+\mathrm{cos}\left({z}\right)−\mathrm{1}\right]\:\mathrm{d}{z}=?? \\…

Prove-0-4-cos-x-sinh-x-1-6-sinh-x-sinh-3x-4-sinh-2-x-2-sinh-2-2x-4-sinh-4-x-4-cosh-4-x-dx-6-2-

Question Number 221100 by Nicholas666 last updated on 24/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Prove}}; \\ $$$$\:\:\int_{\mathrm{0}} ^{\:+\infty} \:\frac{\mathrm{4}\centerdot\boldsymbol{\mathrm{cos}}\:\boldsymbol{{x}}\:\centerdot\:\sqrt[{\mathrm{6}\:\:}]{\boldsymbol{\mathrm{sinh}}\:\boldsymbol{{x}}\:}}{\boldsymbol{\mathrm{sinh}}\:\boldsymbol{{x}}\:+\:\boldsymbol{\mathrm{sinh}}\:\mathrm{3}\boldsymbol{{x}}\:+\:\mathrm{4}\:\boldsymbol{\mathrm{sinh}}^{\mathrm{2}} \:\boldsymbol{{x}}\:−\:\mathrm{2}\:\boldsymbol{\mathrm{sinh}}^{\mathrm{2}} \:\mathrm{2}\boldsymbol{{x}}\:+\:\mathrm{4}\:\boldsymbol{\mathrm{sinh}}^{\mathrm{4}} \:\boldsymbol{{x}}\:+\:\mathrm{4}\:\boldsymbol{\mathrm{cosh}}^{\mathrm{4}} \boldsymbol{{x}}}\:\boldsymbol{\mathrm{d}{x}}\:=\:\frac{\boldsymbol{\pi}}{\:\sqrt{\mathrm{6}}\:+\:\mathrm{2}}\:\:\:\:\:\:\: \\ $$$$ \\ $$ Terms…

Prove-pi-pi-n-0-cos-n-1-x-n-1-1-e-x-2n-1-dx-pi-ln2-

Question Number 221099 by Nicholas666 last updated on 24/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Prove}: \\ $$$$\:\:\underset{\:−\pi} {\overset{\:\pi} {\int}}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{cos}^{{n}\:+\:\mathrm{1}} \:{x}}{\left({n}\:+\:\mathrm{1}\right)\left(\mathrm{1}\:+\:{e}^{{x}^{\mathrm{2}{n}\:+\mathrm{1}} } \right)}\:\:\mathrm{d}{x}\:=\:\pi\:\mathrm{ln2}\:\:\:\:\: \\ $$$$ \\ $$…

0-pi-2-cosec-x-pi-3-cosec-x-pi-6-dx-

Question Number 221048 by fantastic last updated on 23/May/25 $$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{cosec}\:\left({x}−\frac{\pi}{\mathrm{3}}\right)\mathrm{cosec}\:\left({x}−\frac{\pi}{\mathrm{6}}\right){dx}\: \\ $$ Answered by vnm last updated on 24/May/25 $$ \\ $$$$\mathrm{the}\:\mathrm{integral}\:\mathrm{diverges},\:\mathrm{but}\:\mathrm{it}'\mathrm{s} \\…