Menu Close

Category: Integration

let-f-a-0-1-ln-2-x-1-ax-2-dx-with-a-lt-1-1-find-a-explicit-form-of-f-a-2-determine-A-0-1-ln-2-x-1-cos-x-2-dx-with-0-lt-lt-pi-2-

Question Number 60595 by maxmathsup by imad last updated on 22/May/19 $${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\left(\mathrm{1}−{ax}\right)^{\mathrm{2}} }\:{dx}\:\:{with}\:\mid{a}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}^{\mathrm{2}} \left({x}\right)}{\left(\mathrm{1}−\left({cos}\theta\right){x}\right)^{\mathrm{2}} }{dx}\:\:{with}\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\…

Question-126073

Question Number 126073 by benjo_mathlover last updated on 17/Dec/20 Commented by benjo_mathlover last updated on 17/Dec/20 $${The}\:{graph}\:{of}\:{the}\:{differentiable}\: \\ $$$${function}\:{g}\:{with}\:{domain}\:−\mathrm{6}\leqslant{x}\leqslant\mathrm{2}\:{is} \\ $$$${shown}\:{in}\:{the}\:{figure}\:{above}.\:{The}\:{areas} \\ $$$${of}\:{the}\:{regions}\:{bounded}\:{by}\:{the}\:{x}−{axis} \\ $$$${and}\:{the}\:{graph}\:{of}\:{g}\:{on}\:{the}\:{intervals}\:\left[−\mathrm{6},−\mathrm{5}\right]…

Question-60534

Question Number 60534 by aliesam last updated on 21/May/19 Commented by maxmathsup by imad last updated on 22/May/19 $${we}\:{have}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{e}^{{x}^{\mathrm{2}} } }\:=\mathrm{2}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}}…

Question-126068

Question Number 126068 by benjo_mathlover last updated on 17/Dec/20 Answered by liberty last updated on 17/Dec/20 $${h}\left({x}\right)=\int_{\mathrm{1}} ^{\:{x}} {f}\left({t}\right){dt}\:\Leftrightarrow\:{h}\left(\mathrm{1}\right)=\int_{\mathrm{1}} ^{\:\mathrm{1}} {f}\left({t}\right){dt}\:=\:\mathrm{0} \\ $$ Terms of…

Show-that-0-1-Li-2-x-log-x-1-x-dx-3-16-4-Goodluck-

Question Number 126065 by Lordose last updated on 17/Dec/20 $$ \\ $$$$\mathrm{Show}\:\mathrm{that}:: \\ $$$$\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}}\mathrm{dx}\:=\:−\frac{\mathrm{3}}{\mathrm{16}}\zeta\left(\mathrm{4}\right) \\ $$$$\mathrm{Goodluck} \\ $$ Answered by mnjuly1970 last…

calculate-W-2x-2-3y-2-x-y-dxdy-with-W-x-y-R-2-0-lt-x-lt-1-and-0-lt-y-lt-1-

Question Number 60506 by prof Abdo imad last updated on 21/May/19 $${calculate}\:\int\int_{{W}} \:\:\:\:\:\frac{\sqrt{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}} }}{{x}+{y}}\:{dxdy} \\ $$$${with}\:{W}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}<{x}<\mathrm{1}\:{and}\:\mathrm{0}<{y}<\mathrm{1}.\right. \\ $$ Commented by Mr X pcx…

let-f-t-0-3-t-x-x-2-dx-with-t-1-4-1-find-a-explicit-form-of-f-t-2-find-also-g-t-0-3-dx-t-x-x-2-3-calculate-0-3-1-x-x-2-dx-0-3-2-x-x-2-dx-0-

Question Number 60498 by abdo mathsup 649 cc last updated on 21/May/19 $${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{3}} \sqrt{{t}\:+{x}\:+{x}^{\mathrm{2}} }{dx}\:\:{with}\:{t}\:\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{also}\:{g}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{3}} \:\:\:\frac{{dx}}{\:\sqrt{{t}+{x}\:+{x}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\:\int_{\mathrm{0}}…