Menu Close

Category: Integration

Given-f-x-f-x-2-x-R-if-0-2-f-x-dx-k-then-0-1010-f-x-2a-dx-for-a-Z-

Question Number 125841 by bramlexs22 last updated on 14/Dec/20 $${Given}\:{f}\left({x}\right)={f}\left({x}+\mathrm{2}\right)\:\forall{x}\in\mathbb{R} \\ $$$${if}\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}{f}\left({x}\right){dx}={k}\:{then}\:\underset{\mathrm{0}} {\overset{\mathrm{1010}} {\int}}{f}\left({x}+\mathrm{2}{a}\right){dx}\:? \\ $$$${for}\:{a}\in\mathbb{Z}\: \\ $$ Commented by mr W last…

let-f-t-0-e-3-x-2-x-2-t-2-dx-with-t-gt-0-1-determine-a-explicit-form-of-f-t-2-find-also-g-t-0-e-3-x-2-x-2-t-2-2-dx-3-find-the-values-of-integrals-

Question Number 60264 by maxmathsup by imad last updated on 19/May/19 $${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{3}\:\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }{dx}\:\:{with}\:{t}>\mathrm{0} \\ $$$$\mathrm{1}.\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\mathrm{2}.\:{find}\:{also}\:{g}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]}…

let-U-n-0-e-n-x-2-x-2-3-dx-1-calculate-U-n-interms-of-n-2-find-lim-n-n-U-n-3-determine-nature-of-the-serie-U-n-

Question Number 60263 by maxmathsup by imad last updated on 19/May/19 $${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{n}\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} +\mathrm{3}}\:{dx}\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{n}\:{U}_{{n}} \\…

Question-191303

Question Number 191303 by Mingma last updated on 22/Apr/23 Answered by mahdipoor last updated on 22/Apr/23 $$\int{f}\left({x}\right)=\int{xf}^{'} \left({x}\right)−\sqrt{\mathrm{2}{x}−{x}^{\mathrm{2}} }=\left[{xf}\left({x}\right)−\int{f}\left({x}\right)\right]−\int\sqrt{\mathrm{2}{x}−{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:\mathrm{1}} {f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left[{xf}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}}…

I-cos-2x-1-cos-2-x-dx-please-help-

Question Number 125711 by TITA last updated on 13/Dec/20 $$\:\mathrm{I}=\int\frac{\mathrm{cos}\:\mathrm{2x}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:=?\:\:\mathrm{please}\:\mathrm{help} \\ $$$$ \\ $$ Answered by bramlexs22 last updated on 13/Dec/20 $${let}\:\mathrm{tan}\:\left({x}\right)=\:{t}\:\wedge\:{dt}\:=\:\frac{{dx}}{\mathrm{cos}\:^{\mathrm{2}} {x}} \\…