Menu Close

Category: Integration

INTEGRAL-prove-that-0-x-3-ln-1-e-x-x-dx-45-8-5-

Question Number 125684 by mnjuly1970 last updated on 13/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\:\mathrm{INTEGRAL}… \\ $$$$\:\:\:\:\mathrm{prove}\:\:\mathrm{that}\:: \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} {x}^{\mathrm{3}} \left\{{ln}\left(\mathrm{1}+{e}^{{x}} \right)\:−{x}\right\}{dx}=\frac{\mathrm{45}}{\mathrm{8}}\:\zeta\left(\:\mathrm{5}\:\right) \\ $$$$ \\ $$ Answered by Dwaipayan…

2-x-1-x-1-4-dx-

Question Number 191188 by cortano12 last updated on 20/Apr/23 $$\:\:\:\:\:\:\:\:\:\:\:\int\:\sqrt[{\mathrm{4}}]{\frac{\mathrm{2}−\mathrm{x}}{\mathrm{1}−\mathrm{x}}}\:\mathrm{dx}\:=?\: \\ $$ Answered by mehdee42 last updated on 20/Apr/23 $$\sqrt[{\mathrm{4}}]{\frac{\mathrm{2}−{x}}{\mathrm{1}−{x}}}={u}\Rightarrow{x}=\frac{{u}^{\mathrm{4}} −\mathrm{2}}{{u}^{\mathrm{4}} −\mathrm{1}}\Rightarrow{dx}=\frac{\mathrm{4}{u}^{\mathrm{3}} }{\left({u}^{\mathrm{4}} −\mathrm{1}\right)^{\mathrm{2}} \:}\:{du}…

Question-60036

Question Number 60036 by sitangshu17 last updated on 17/May/19 Answered by tanmay last updated on 17/May/19 $${x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6}>\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)>\mathrm{0} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6} \\ $$$${when}\:…

x-i-dx-

Question Number 60027 by aliesam last updated on 17/May/19 $$\int{x}^{{i}} {dx}=? \\ $$ Answered by MJS last updated on 17/May/19 $$\int{x}^{\mathrm{i}} {dx}=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{i}}{x}^{\mathrm{1}+\mathrm{i}} +{C}=\frac{\mathrm{1}−\mathrm{i}}{\mathrm{2}}{x}^{\mathrm{1}+\mathrm{i}} \\ $$…

let-U-n-0-e-n-x-2-x-2-3-2-dx-1-find-U-n-interms-of-n-2-calvulate-lim-n-U-n-3-study-the-serie-U-n-

Question Number 59999 by Mr X pcx last updated on 16/May/19 $${let}\:{U}_{{n}} \:\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{n}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{U}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{calvulate}\:\:{lim}_{{n}\rightarrow+\infty} \:\:\:{U}_{{n}}…