Question Number 125501 by mathmax by abdo last updated on 11/Dec/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{n}^{\mathrm{4}} −\mathrm{1}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 125500 by mathmax by abdo last updated on 11/Dec/20 $$\mathrm{find}\:\mathrm{relation}\:\mathrm{between}\:\int\:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\:\mathrm{and}\:\int\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)\mathrm{dx}\:\: \\ $$ Answered by mathmax by abdo last updated on 11/Dec/20 $$\mathrm{let}\:\left[\mathrm{a},\mathrm{b}\right]\subset\overset{−}…
Question Number 59960 by cesar.marval.larez@gmail.com last updated on 16/May/19 Answered by MJS last updated on 16/May/19 $$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}\:\mathrm{the}\:\mathrm{question} \\ $$$$\mathrm{is}\:{A}\:\mathrm{the}\:\mathrm{source}\:\mathrm{or}\:\mathrm{the}\:\mathrm{target}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vectors}? \\ $$$$\mathrm{if}\:\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{source} \\ $$$${X}={A}+\overset{\rightarrow} {\mathfrak{v}}=\left({a},\:{b}\right)+\left({v},\:{w}\right)=\left({a}+{v},\:{b}+{w}\right) \\…
Question Number 59946 by Sardor2211 last updated on 16/May/19 Commented by maxmathsup by imad last updated on 17/May/19 $${let}\:{use}\:{the}\:{chang}\:\:\mathrm{1}+\left({x}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:={t}\:\Rightarrow\left({x}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:={t}−\mathrm{1}\:\Rightarrow{x}+\mathrm{1}\:=\left({t}−\mathrm{1}\right)^{\mathrm{3}} \:\Rightarrow \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{0}}…
Question Number 125462 by mnjuly1970 last updated on 11/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\clubsuit{advanced}\:\:{calculus}\clubsuit… \\ $$$$\:\:\:\blacklozenge\blacklozenge\:{prove}\:{that}: \\ $$$$\:\:\:\:\:\mathrm{I}=\int_{\mathrm{1}} ^{\:\infty} \frac{\left({t}^{\mathrm{4}} −\mathrm{6}{t}^{\mathrm{2}} +\mathrm{1}\right){ln}\left({ln}\left({t}\right)\right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{3}} }{dt}=\frac{\mathrm{2G}}{\pi} \\ $$$$\:\:\mathrm{G}\::\:\:{catalan}\:\:{constant}… \\ $$ Answered…
Question Number 59926 by rahul 19 last updated on 16/May/19 Commented by rahul 19 last updated on 16/May/19 $$\mathrm{5},\mathrm{6}. \\ $$ Answered by tanmay last…
Question Number 125458 by mnjuly1970 last updated on 11/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{advanced}\:\:{calculus}… \\ $$$$\:\:\:\:\:\:\:\:{evaluate}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left\{\:\frac{\zeta\:\left(\mathrm{2}{n}\:\right)}{\mathrm{2}^{\:{n}} }\:\right\}\:=?? \\ $$$$ \\ $$ Answered by Dwaipayan Shikari…
Question Number 190987 by Rupesh123 last updated on 15/Apr/23 Answered by 07049753053 last updated on 16/Apr/23 $$\boldsymbol{\mathrm{let}}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} =\boldsymbol{\mathrm{u}}\:\boldsymbol{\mathrm{dx}}=\frac{\boldsymbol{\mathrm{du}}}{\mathrm{2}\sqrt{\boldsymbol{\mathrm{u}}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{e}}^{−\boldsymbol{\mathrm{u}}} \boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{u}}\right)}{\boldsymbol{\mathrm{u}}\sqrt{\boldsymbol{\mathrm{u}}}}\boldsymbol{\mathrm{du}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \boldsymbol{\mathrm{u}}^{−\frac{\mathrm{3}}{\mathrm{2}}}…
Question Number 190984 by Spillover last updated on 15/Apr/23 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{3}} \int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} \mathrm{ydydx}\: \\ $$$$ \\ $$ Answered by a.lgnaoui last…
Question Number 190983 by Spillover last updated on 15/Apr/23 $$ \\ $$$$\:\:\:\:\int_{\boldsymbol{{x}}= } ^{ } \int_{\boldsymbol{{y}}= } ^{ −\boldsymbol{{x}}} \int_{\boldsymbol{{z}}= } ^{ −\boldsymbol{{x}}−\boldsymbol{{y}}} \boldsymbol{{xdzdydx}} \\…