Question Number 124976 by liberty last updated on 07/Dec/20 $$\left(\mathrm{1}\right)\:{The}\:{gravitational}\:{force}\:\left({in}\:{lb}\right)\:{of} \\ $$$${attraction}\:{between}\:{two}\:{objects}\:{is}\:{given} \\ $$$${by}\:{F}\:=\frac{{k}}{{x}^{\mathrm{2}} },\:{where}\:{x}\:{is}\:{the}\:{distance} \\ $$$${between}\:{the}\:{objects}.\:{If}\:{the}\:{objects}\:{are} \\ $$$$\mathrm{10}\:{ft}\:{apart},\:{find}\:{the}\:{work}\:{required}\:{to} \\ $$$${separate}\:{them}\:{until}\:{they}\:{are}\:\mathrm{50}\:{ft}\:{apart}.\:{Express} \\ $$$${the}\:{result}\:{in}\:{terms}\:{of}\:{k}. \\ $$$$\left({a}\right)\:\frac{{k}}{\mathrm{500}}\:\:\:\:\:\:\left({b}\right)\:\frac{\mathrm{2}{k}}{\mathrm{25}}\:\:\:\:\:\left({c}\right)\:\frac{{k}}{\mathrm{5}}\:\:\:\left({d}\right)\:\frac{{k}}{\mathrm{40}}…
Question Number 59438 by tanmay last updated on 10/May/19 Commented by maxmathsup by imad last updated on 10/May/19 $${we}\:{have}\:{I}_{{n}} =_{\pi{x}\:={t}} \:\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{t}^{{n}} }{\pi^{{n}} }\:{sin}\left({t}\right)\:\frac{{dt}}{\pi}\:=\frac{\mathrm{1}}{\pi^{{n}+\mathrm{1}}…
Question Number 124957 by Study last updated on 07/Dec/20 Commented by Study last updated on 07/Dec/20 $${please}\:{help}\:{me}?? \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 190487 by stvnmaxi last updated on 03/Apr/23 Answered by aleks041103 last updated on 04/Apr/23 $${A}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {y}^{\mathrm{2}} {dxdy}\:=\left(\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}}…
Question Number 124922 by mathmax by abdo last updated on 07/Dec/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculste}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{develop}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$…
Question Number 124920 by mathmax by abdo last updated on 07/Dec/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}^{\mathrm{n}} } \mathrm{dx}\: \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 124921 by mathmax by abdo last updated on 07/Dec/20 $$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\mathrm{z}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}\:\:\mathrm{with}\:\mathrm{z}\:\mathrm{complex} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 124919 by mathmax by abdo last updated on 07/Dec/20 $$\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}} \mathrm{arctan}\left(\mathrm{x}\right)\mathrm{dx}\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{nstural} \\ $$ Commented by mindispower last updated on 07/Dec/20…
Question Number 59381 by Karan last updated on 09/May/19 $$\:\:\int\frac{{xdx}}{\mathrm{sin}\:{x}}\:=\:? \\ $$ Commented by Mr X pcx last updated on 11/May/19 $${let}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} \:\:\frac{{t}}{{sint}}{dt}\:{we}\:{have}\: \\…
Question Number 124906 by Mammadli last updated on 06/Dec/20 $$\int\boldsymbol{{sinx}}^{\mathrm{3}} \boldsymbol{{dx}}=? \\ $$ Commented by Dwaipayan Shikari last updated on 06/Dec/20 $$\int{sinx}^{\mathrm{3}} {dx}\:\:\:\:\:\:\:\:\:\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\int{e}^{{ix}^{\mathrm{3}}…