Question Number 220897 by Nicholas666 last updated on 20/May/25 $$ \\ $$$$\:\:\:\int\int\int_{\:\left[\mathrm{0},\mathrm{1}\right]^{\:\mathrm{3}} } \:\frac{\mathrm{1}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} {y}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} {z}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} {x}^{\mathrm{2}} }\:{dxdydz}\:\:\:\:\: \\ $$$$ \\ $$ Terms…
Question Number 220892 by Nicholas666 last updated on 20/May/25 $$ \\ $$$$\:\:\:\:\int\int\int_{\boldsymbol{{x}}^{\mathrm{2}} \:+\:\boldsymbol{{y}}^{\mathrm{2}} \:+\:\boldsymbol{{z}}^{\mathrm{2}} \:\:\leqslant\:\mathrm{1}} \:\frac{\mathrm{1}}{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$ Answered…
Question Number 220899 by Nicholas666 last updated on 20/May/25 $$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\:\mathrm{3}} } \:\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)\left(\mathrm{1}+{xyz}\right)}\:{dxdydz}\:\:\:\:\:\:\: \\ $$$$ \\ $$ Terms of Service Privacy…
Question Number 220895 by Nicholas666 last updated on 20/May/25 $$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{3}} } \frac{{ln}\:\left(\mathrm{1}\:+\:{xyz}\right)}{\left(\mathrm{1}\:+\:{x}\right)\left(\mathrm{1}\:+\:{y}\right)\left(\mathrm{1}\:+\:{z}\right)}\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 220889 by Nicholas666 last updated on 20/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\int\int\int_{\:\left[\mathrm{0},\mathrm{1}\left[^{\:\mathrm{3}} \right.\right.} \:\frac{\mathrm{1}}{\mathrm{1}\:+\:{xyz}}\:{dxdydz} \\ $$$$ \\ $$ Answered by breniam last updated on 20/May/25…
Question Number 220891 by Nicholas666 last updated on 20/May/25 $$ \\ $$$$\:\:\:\:\:\int\int\int_{\left[\mathrm{0},\infty\right]^{\:\mathrm{3}} } \:\frac{{e}^{−\left({x}\:+\:{y}\:+\:{z}\:\right)} }{\mathrm{1}\:+\:{xyz}}\:{dxdydz} \\ $$$$ \\ $$ Answered by breniam last updated on…
Question Number 220791 by Nicholas666 last updated on 19/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{x}^{\mathrm{2}} }{\boldsymbol{\mathrm{sin}}\:{x}\:+\:\mathrm{1}}\:{dx} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 220730 by Nicholas666 last updated on 18/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{1}}{\:\sqrt{{x}\left(\mathrm{1}\:−\:{x}\right)\left(\mathrm{1}\:+\:{kx}\right)}}\:{dx}\:,\:\left(−\mathrm{1}\:<\:{k}\:<\:\mathrm{1}\right)\:\:\: \\ $$$$ \\ $$ Answered by SdC355 last updated on 18/May/25…
Question Number 220715 by Noorzai last updated on 18/May/25 Commented by Noorzai last updated on 18/May/25 $${do}\:{you}\:{help}\:{me} \\ $$$$ \\ $$ Answered by SdC355 last…
Question Number 220770 by mnjuly1970 last updated on 18/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{sin}\left({x}\right)}{\:\sqrt{\mathrm{1}\:+\sqrt{{sin}\left(\mathrm{2}{x}\right)}}}{dx}\: \\ $$ Answered by Ghisom last updated on 21/May/25 $${F}\left({x}\right)=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}}…