Menu Close

Category: Integration

x-2-y-2-z-2-1-1-1-x-2-y-2-z-2-2-dxdydz-

Question Number 220892 by Nicholas666 last updated on 20/May/25 $$ \\ $$$$\:\:\:\:\int\int\int_{\boldsymbol{{x}}^{\mathrm{2}} \:+\:\boldsymbol{{y}}^{\mathrm{2}} \:+\:\boldsymbol{{z}}^{\mathrm{2}} \:\:\leqslant\:\mathrm{1}} \:\frac{\mathrm{1}}{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$ Answered…

0-1-3-ln-1-xyz-1-x-1-y-1-z-dxdydz-

Question Number 220895 by Nicholas666 last updated on 20/May/25 $$ \\ $$$$\:\:\:\int\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{3}} } \frac{{ln}\:\left(\mathrm{1}\:+\:{xyz}\right)}{\left(\mathrm{1}\:+\:{x}\right)\left(\mathrm{1}\:+\:{y}\right)\left(\mathrm{1}\:+\:{z}\right)}\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

0-pi-2-sin-x-1-sin-2x-dx-

Question Number 220770 by mnjuly1970 last updated on 18/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{sin}\left({x}\right)}{\:\sqrt{\mathrm{1}\:+\sqrt{{sin}\left(\mathrm{2}{x}\right)}}}{dx}\: \\ $$ Answered by Ghisom last updated on 21/May/25 $${F}\left({x}\right)=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}}…