Question Number 124063 by Bird last updated on 30/Nov/20 $${find}\:\:\int\int_{{D}} \frac{{arctan}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)}{{x}+{y}}{dxdy} \\ $$$${D}=\left\{\left({x},{y}\right)\:/\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\right\} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 124061 by Bird last updated on 30/Nov/20 $${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{xarctanx}}{\left({x}^{\mathrm{2}\:} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Answered by mnjuly1970 last updated on 30/Nov/20 $$\Omega=\left[\frac{−\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{tan}^{−\mathrm{1}}…
Question Number 124059 by Bird last updated on 30/Nov/20 $${find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{3}} {sin}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 124046 by john_santu last updated on 30/Nov/20 $$\:\:\phi\left(\alpha\right)\:=\:\int\:\frac{\mathrm{6}\alpha^{\mathrm{2}} +\mathrm{30}\alpha+\mathrm{2}}{\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{20}\alpha+\mathrm{25}}\:{d}\alpha\: \\ $$ Answered by liberty last updated on 30/Nov/20 $$\:\phi\left(\alpha\right)\:=\:\int\:\frac{\mathrm{6}\alpha^{\mathrm{2}} +\mathrm{30}\alpha+\mathrm{2}}{\left(\mathrm{2}\alpha+\mathrm{5}\right)^{\mathrm{2}} }\:{d}\alpha \\…
Question Number 124043 by liberty last updated on 30/Nov/20 $$\:\int\:\frac{\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}{\mathrm{1}−\mathrm{2cos}\:\mathrm{2}{x}}\:{dx}\: \\ $$ Answered by john_santu last updated on 30/Nov/20 Answered by Dwaipayan Shikari last updated…
Question Number 58488 by Mr X pcx last updated on 23/Apr/19 $${let}\:{f}\left({x}\right)\:=\int\:\:\:\frac{{dt}}{{x}\:+{cost}\:+{cos}\left(\mathrm{2}{t}\right)}\:\:\left({x}\:{real}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){determine}\:{also}\:\int\:\:\frac{{dt}}{\left({x}+{cost}\:+{cos}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:\int\:\:\:\frac{{dt}}{\mathrm{1}+{cos}\left({t}\right)+{cos}\left(\mathrm{2}{t}\right)}\:{and} \\ $$$$\int\:\:\:\frac{{dt}}{\left(\mathrm{3}\:+{cos}\left({t}\right)+{cos}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} } \\ $$ Commented…
Question Number 124024 by hatakekakashi1729gmailcom last updated on 30/Nov/20 Answered by Dwaipayan Shikari last updated on 30/Nov/20 $$\left({x}^{{x}} \right)^{\left({x}^{{x}} \right)^{\left({x}^{\left.{x}\right)} \right)…} } ={t}\:\:\:\:\:\:\:\:\:\:\:{x}^{{x}} ={y} \\…
Question Number 58487 by Mr X pcx last updated on 23/Apr/19 $${let}\:{f}\left({x}\right)\:=\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\frac{{dt}}{\mathrm{2}+{xsint}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){determine}\:{also}\:{g}\left({x}\right)=\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\frac{{sint}}{\left(\mathrm{2}+{xsint}\right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\frac{{dt}}{\mathrm{2}+\mathrm{3}{sint}}…
Question Number 189549 by mnjuly1970 last updated on 18/Mar/23 $$ \\ $$$$\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{dxdy}}{\left(\mathrm{1}+{xy}\:\right)^{\:\mathrm{4}} }=? \\ $$ Answered by witcher3 last updated on…
Question Number 58478 by rahul 19 last updated on 23/Apr/19 $$\left\{\mathrm{1}\right\}\:\:\:\int\frac{{x}^{\mathrm{2}} −\mathrm{2}}{{x}^{\mathrm{4}} +\mathrm{8}{x}^{\mathrm{2}} +\mathrm{4}}\:{dx}\:=\:? \\ $$$$\left\{\mathrm{2}\right\}\:\:{Shortest}\:{distance}\:{between}\:{the} \\ $$$${parabolas}\:{y}^{\mathrm{2}} =\mathrm{4}{x}\:{and}\:{y}^{\mathrm{2}} =\mathrm{2}{x}−\mathrm{6}\:{is}\:? \\ $$ Commented by maxmathsup…